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ABSTRACT 

Singular Spectrum Analysis (SSA) has been approved as a model-free technique to analyse 
time series. SSA can solve different problems such as decomposition into a sum of trend, 
periodicities, and noise, smoothing, and others. In this paper, we validate abilities of 2D-SSA 
(the extension of SSA to analyse two-dimensional scalar fields) to treat digital terrain models 
(DTMs). The study is exemplified by a 30-arc-second digital elevation model of a part of 
South America derived from GTOPO30. Results demonstrate that 2D-SSA is an efficient 
method to denoise and generalise DTMs. It can be also used to decompose a topographic 
surface into components of continental, regional, and local scales. 
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INTRODUCTION 
A surface can be viewed as a sum of surfaces. This triviality forms the basis to solve a variety 
of problems using digital terrain analysis. The best-known tasks follow: (1) separating 
topographic components of different scales; (2) denoising digital terrain models (DTMs); and 
(c) generalising DTMs, that is, removing non-noise high-frequency components from DTMs. 
These tasks are usually attacked by multiple regressions (Chorley and Huggett, 1965; Tobler, 
1969), weighted moving averages (Tobler, 1969), Fourier analysis (Rudy, 1989), Kalman 
filtering (Gallant, 2006), and isobase mapping (Grohmann et al., 2007). In this paper, we 
report the first results of evaluation of two-dimensional Singular Spectrum Analysis (2D-
SSA) as a tool to denoise and generalise DTMs and to separate continental, regional, and 
local components of topography. 
 
SSA was originated as a model-free technique to analyse one-dimensional time series (Elsner 
and Tsonis, 1996; Danilov and Zhigljavsky, 1997; Golyandina et al., 2001). The SSA can be 
used to decompose a time series into a sum of trend, oscillations, and noise, to detect 
periodicities, to smooth and denoise signals, to forecast time series, and to impute missing 
data (GistaT Group, 1997-2007). 
 
There are multidimensional extensions of SSA. Multichannel SSA (MSSA) is intended to 
analyse simultaneously a set of time series with common features (Elsner and Tsonis, 1996; 
Danilov and Zhigljavsky, 1997; Golyandina and Stepanov, 2005). MSSA can be applied to 
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2D scalar fields if one dimension is considered as time. The 2D-SSA was specially designed 
to process 2D scalar fields (Danilov and Zhigljavsky, 1997). Unlike MSSA, 2D-SSA is 
invariant regarding field rotation. 2D-SSA shares common traits with 2D-ESPRIT (Rouquette 
and Najim, 2001) applied to a specific problem of estimation of frequencies and damping 
factors. 
 

2D-SSA ALGORITHM 
Let us consider a 2D discrete field : , , × , , R{1 } {1 }r cf … N … N  given by a matrix 

, , ,⎛ ⎞
⎜ ⎟, , ,⎜ ⎟= .
⎜ ⎟
⎜ ⎟

, , ,⎝ ⎠

(11) (1 2) (1 )
(2 1) (2 2) (2 )

F

( 1) ( 2) ( )

c

c

r r r c

f f … f N
f f … f N

f N f N … f N N

 (1) 

Algorithm parameters are window sizes ( , )r cL L , where ≤ ≤1 r rL N , ≤ ≤1 c cL N , 
< <1 r c r cL L N N . Set = − +1r r rK N L  and = − +1c c cK N L . The algorithm includes two 

stages, decomposition and reconstruction, each of them consists of two steps (see details on 
matrix calculus elsewhere – Magnus and Neudecker, 1999, Chapter 1). 
 

Decomposition 
Embedding 

The first step consists in the construction of the trajectory matrix of the field F  by moving 
×r cL L -windows. In the 1D case, one transforms a 1D object into a 2D matrix (Golyandina et 

al., 2001). Here, we embed a 2D object into a four-dimensional space. To flatten the 4D 
object, we transform moving windows 
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where ≤ ≤1 ri K , ≤ ≤1 cj K , to columns of the flattened trajectory matrix W  ( ,Fi j  transfers 
to the ( + −( 1) ri j K )th column). For example, if = = 2r cL L , then the window 
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is transformed into the first column T( (11) (2 1) (1 2) (2 2))f f f f, , , , , , , . 
 
It is appropriate to use vectorising and matricizing operations: for a ×M N -matrix B , 

∈Rvec MNB  is the vector constructed from stacked columns of B . If we fix matrix sizes M  
and N , then ,( )M N -matricizing will be opposite to vectorising: =matr vecB B . Thus, the 
trajectory matrix W  of the field F  consists of r cK K  columns ,vecFi j , ≤ ≤1 ri K , 
≤ ≤1 cj K . Furthermore, the matrix W  of the size ×r c r cL L K K  can be presented in a more 

structured form: 
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where 
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The matrix W  has the block-Hankel structure with the same blocks along secondary 
diagonals. Each block iH  is Hankel itself: it is the trajectory matrix of the 1D series ⋅,( )f i  
(the i th column of the initial field F ). The matrix W  will be further called the block-Hankel 
trajectory matrix of the field F . Note that there is the one-to-one correspondence between 

×r cN N  fields and block-Hankel matrices with ×r rL K  Hankel blocks. 
 

Singular value decomposition 
This step is a singular value decomposition of the block-Hankel trajectory matrix: 

λ
= =

= = ,∑ ∑ T

1 1

d d

i i i i
i i

U VW W  (6) 

where λ λ, ,1 d…  are non-zero eigenvalues of the matrix TWW  arranged in decreasing order 

of magnitudes (λ λ λ≥ ≥ ≥ >1 2 0d… ), , , , ∈R1{ } r cL L
d iU … U U  is the corresponding 

orthonormal system of the eigenvectors, and , , , ∈R1{ } r cK K
d iV … V V  is the orthonormal system 

of the corresponding factor vectors 
λ= ./T

i i iV UW  (7) 

By analogue with principal component analysis, the vectors λi iV  are called principal 
component vectors. They are conveniently considered as matrices: the ,( )r cL L -matricizing of 
an eigenvector is called an eigenfield, the ,( )r cK K -matricizing of a factor vector is called a 
factor field, and the ,( )r cK K -matricizing of a vector of principal components is called a 
principal component field. A set of square root of ith eigenvalue, ith eigenfield, and ith factor 
field is called ith eigentriple (ET). 
 

Reconstruction 
Grouping 

This step consists in grouping of addends in the decomposition (Eq. 6), that is, the 
corresponding eigentriples. Let us divide the set , ,{1 }… d  into m disjoint subsets Ι , , Ι1 m… . 
Summing iW , ∈Ιki , we come to the expansion 

Ι
=

= ∑
1

.
k

m

k
W W  (8) 

 
Averaging 

Grouped matrices Ιk
W  do not necessarily have block-Hankel form. Therefore, one needs an 
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additional step to transfer the decomposition (Eq. 8) of the block-Hankel trajectory matrix W  
into a decomposition of the initial field F . This can be done by the orthogonal projection (in 
Frobenious norm) of the matrices Ιk

W  on the set of block-Hankel matrix with Hankel blocks, 
like Eq. 4. After projection, we obtain 

=

= ,∑
1

m

k
k

W W  (9) 

where kW , = , ,1k … m , have a form of Eq. 4. Using the one-to-one correspondence between 
block-Hankel trajectory matrices and 2D fields, we come to the final decomposition of the 
initial field: 

=
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1

F F
m

k
k

 (10) 

 
Let us discuss the projection algorithm in details. Consider one of components of the 
decomposition (Eq. 8): 
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where ,Wi j  are ×r rL K  blocks. The projection is equivalent to two sequential averaging 
procedures: ‘within block’ hankelization and ‘between blocks’ one. 
 
1. ‘Within block’ hankelization. Averaging ,( )k l -entries of ,Wi j  with + =k l s , where 
≤ ≤1 rs N , we obtain the Hankel matrices. Thus, we have a matrix with Hankel blocks: 
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2. ‘Between blocks’ hankelization. The matrix Ι′W  can be considered as a matrix of blocks. 
Therefore, hankelization by blocks lies in averaging of the blocks Wi j,′ , + =i j s , where 
≤ ≤1 cs N . The final form is block-Hankel with Hankel blocks: 
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Notice that operations 1 and 2 are permutable. 
 

Comments 
The result of the method consists in a decomposition of the initial field into a sum of 
components. It is expected that if the field F  is a sum of a smooth surface, oscillations, and 
noise, so there exists such a grouping that the resultant decomposition (Eq. 10) is close to the 
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initial field decomposition. This gives an opportunity for smoothing, denoising, removing 
periodic noise, etc. 
 
Rules to select 2D-SSA parameters are mostly similar to the 1D case (Golyandina et al., 
2001). In particular, small window sizes produce adaptive smoothing. The most detailed 
decomposition and the better separation of the field components can be obtained if window 
sizes are close to ( / , /2 2r cN N ). However, the use of big window sizes can lead to the mixing 
problem caused by too detailed decomposition of components. Calculation cost can set 
additional restrictions on parameters, as one should find eigenvectors and eigenvalues of a 
large matrix ×r c r cL L L L . 
 
At the grouping step, selection of ET in Eq. 6 for the grouping stems from the fact that 
eigenfields and factor fields are similar to the component of F , which generates them. In 
particular, smooth surface generates slowly varying factor fields. 
 

MATERIALS 
To validate 2D-SSA, we select a portion of the Northern Andes measuring 4º by 4º, located 
between 2º S and 2º N, and 78º30’ W and 74º30’ W (Fig. 1a). The area covers regions of 
Ecuador, Colombia, and Peru including parts of the coastal plain, the Andean range, and the 
Upper Amazon basin. 
 
A digital elevation model (DEM) of the study area was extracted from GTOPO30, the 30 arc-
seconds gridded global DEM (U.S. Geological Survey, 1996). The DEM measures 480 
columns by 481 rows (viz., 230,880 points). It has a grid size of 30” (about 925 m). Elevation 
ranges from 5 m to 6085 m (Fig. 1b). 
 
We selected this area and GTOPO30 on two counts. First, it is well known that this DEM 
incorporates a high-frequency noise caused by interpolation errors and inaccurate merging of 
topographic charts. Spatial distribution of noise in these DEMs is uneven and depends on the 
accuracy of cartographic sources. In particular, mountainous regions are marked by relatively 
low level of the noise, while the potent noise is typical for forested regions of Africa and 
South America. This is because reasonably detailed and accurate topographic data is 
unavailable for such regions, so the interpolation of sparse contours has been used to compile 
these portions of GTOPO30. Although DEM noise is no obstacle to produce realistic maps of 
elevation, it leads to derivation of noisy and unreadable maps of secondary topographic 
variables (e.g., curvatures). This is because their derivation is based on the calculation of the 
first and second partial derivatives of elevation that increases dramatically the noise 
(Florinsky, 2002). The study area, consisting of high mountains and forested foothills marked 
by different level of noise, is ideally suited for validating 2D-SSA as a tool to denoise DEMs. 
Second, the use of this DEM allowes us to test possibilities of 2D-SSA to decompose a 
topographic surface into components of different scales under complex geomorphic 
conditions. 
 

DATA PROCESSING 
To reduce the huge range of elevations (6080 m), the initial DEM was transformed by taking 
the natural logarithm. Logarithmic DEMs were used in the further processing and mapping. 
We did not interpolate or smooth DTMs. 
 
Using the window size of 30 by 30, the initial DEM was decomposed into 900 eigentriples 
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(Fig. 2). We evaluated various combinations of eigentriples to reconstruct DEMs. Finally, the 
best variants were selected. To denoise the DEM, a DEM was reconstructed from the ET 1-
100. To exemplify DTM generalisation, two DEMs were reconstructed from the ET 1-50 and 
1-25. To separate continental, regional, and local components of topography, six DEMs were 
reconstructed from the ET 1, 2, 3, 2-3, 4-25, and 51-100. To visualise a noise component of 
GTOPO30, a DEM was reconstructed from the ET 101-900. DEM processing was done by 
software 2D-SSA version 1.2 (© K. Usevich and N. Golyandina, 2005-2007). 
 
Horizontal curvature (kh), one of the most important and widely used topographic attributes, 
was derived from the initial and reconstructed DEMs by the method intended to process 
DEMs given by a spheroidal trapezoidal grid (Florinsky, 1998). kh values were also 
transformed by taking the natural logarithm: 

⎪
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0),101ln(
0,0
0),101ln(

8

8

'

hh
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hh

h

kk
k
kk
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To clarify an effect of denoising and generalisation, we mapped kh stratifying its values into 
two levels: kh > 0 and kh < 0 (areas of flow divergence and convergence, correspondingly). 
All DTMs produced had a grid size of 30”. The plate carrée projection was used to map 
DTMs. Calculations and mapping was done with LandLord 4.0 (Florinsky et al., 1995). 
Initial and reconstructed DTMs were compared using Statgraphics Plus 3.0 (© Statistical 
Graphics Corp., 1994-1997). 
 

RESULTS AND DISCUSSION 
A visual comparison of elevation maps derived from the initial DEM (Fig. 3a) and two DEMs 
reconstructed from the ET 1-100 (Fig. 3b) and 1-50 (Fig. 3c) allows one to see nothing but 
marginal changes in image patterns. A cursory examination may lead to an underestimation 
of results of the DEM denoising and generalisation. kh maps give better insight into the 
results. Indeed, typical manifestation of interpolation errors – ‘tracks’ of contours (Florinsky, 
2002) – can be found on the kh map derived from the initial DEM (Fig. 3d). These tracks are 
typical for the Andean foothills covered by dense rain forests. It is hardly probable that this 
map may be used for any application. However, there are no error tracks on kh maps derived 
from DEMs reconstructed from the ET 1-100 (Fig. 3e) and 1-50 (Fig. 3f). One can see so-
called flow structures formed by convergence and divergence areas (black and white image 
patterns, correspondingly). These maps may be used for geomorphic and geological 
interpretation. A comparison between kh maps derived from different DEMs (Fig. 3d-f) 
shows a pronounced effect of the map generalisation. The less number of the eigentriples 
used to reconstruct a DEM, the more smooth and simplified image patterns obtained. 
Reducing the number of ET used for DEM reconstruction leads to the marked reduction of 
the range of kh values (Fig. 3d-f) but influences the range of elevation values only slightly 
(Fig. 3a-c). This is also demonstrated by histograms and scatter plots (we do not present them 
for reasons of space). 
 
A DEM reconstructed from the ET 1 is marked by the highest level of generalisation. This 
DEM represents a generalised morphostructure of the continental scale, the Andean Range 
with foothills (Fig. 4a). Derivation of kh from this DEM allowes us to reveal a system of near-
NW-SE-striking lineaments (Fig. 4b), which may indicate strike-slip faults (Florinsky, 1996). 
Although there are no structures of this sort in the recent database of Quaternary faults 
(Eguez et al., 2003), this does not attest that the lineaments are of erosional origin. First, 
geology of the Upper Amazon basin is poorly known. Second, they may indicate pre-



Draft version of “Filtering of Digital Terrain Models by Two‑Dimensional Singular Spectrum Analysis” International Journal of 
Ecology & Development, Vol. 8, No. F07, P.81-94. 

7

Quaternary structures. Indeed, Chebanenko (1964) has described a system of deep-seated 
faults with the NW-SE strike situated to the southeast of the study area (Fig. 1a). The 
lineaments detected may be associated with northwestern extensions of the faults. 
 
A DEM reconstructed from the ET 2-3 (Fig. 4c) represents landforms probably connected 
with regional tectonic structures. For a DEM reconstructed from the ET 2, patterns agree 
closely with the direction of the Andean range. A DEM reconstructed from the ET 3 
represents features probably related to the kh lineaments (Fig. 4b). It is conceivable that near-
NW-SE-striking structures control spatial distribution of river valleys of the Upper Amazon 
basin. A DEM reconstructed from the ET 4-25 (Fig. 4d) represents landforms associated with 
geomorphic processes of a regional scale. For example, one can find generalised valleys of 
tributaries of Amazon River. 
 
A DEM reconstructed from the ET 51-100 (Fig. 5a) represents high-frequency components, 
which cannot be considered as noise. However, it is impossible to find familiar patterns of the 
drainage network on this map. These components might represent topographic manifestation 
of local geomorphic processes. A DEM reconstructed from the ET 101-900 (Fig. 5b) presents 
the noise inherent in GTOPO30 (Fig. 3a). This is precisely the noise, which rendered the kh 
map derived from the initial DEM (Fig. 3d) unsuitable for applications. Among other 
patterns, one can see a rectangular feature along the northeastern border of the map (Fig. 5b). 
This is a trace of the inaccurate merging of adjacent topographic charts during the 
compilation of GTOPO30. This map shows the difference between the initial DEM (Fig. 3a) 
and the DEM reconstructed from the ET 1-100 (Fig. 3b). 
 
The DEM reconstructions from the ET 1, 2, 3 and 2-3 may be considered as application of 
low-pass filters to the initial DEM, while the DEM reconstruction from the ET 101-900 and 
51-100 – as application of high-pass filters. 
 

CONCLUSIONS 
The results demonstrate that 2D-SSA is a powerful method to denoise DTMs. The 2D-SSA-
based denoising of DEMs leads to extremely fine changes in elevations. These changes 
cannot be captured except by derivation of secondary terrain attributes. In fact, 2D-SSA can 
remove the noise without damage to the signal unlike usual smoothing by moving averages. 
This suggests that 2D-SSA is a method of exceptional importance for preliminary treatment 
of noisy DEMs including global ones. This opens the way to utilise noisy DEMs for 
derivation of important topographic variables, such as land surface curvatures. 
 
2D-SSA can be used to decompose a topographic surface into components of continental, 
regional, and local scales. ET selection to reconstruct topographic components of different 
scales may be marked by non-uniqueness and ambiguity. The similar problem arises if a 
multiple regression or spectral filtering is used to extract regional or local components from 
DEMs. However, the problem is largely associated with the qualitative character of scale 
notions in geomorphology rather than with mathematical features of a decomposition 
technique. Moreover, as in the 1D case (Golyandina et al., 2001), 2D-SSA provides 
techniques to identify ET appropriate for a particular grouping (this was not used in the 
study). Finally, 2D-SSA is a model-free approach, that is, it does not use a priori assumption 
or statistical hypothesis about DEM structure as contrasted to multiple regressions. 
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Fig. 1. The study area: (a) geographical location and some deep-seated faults (Chebanenko, 
1964); and (b) elevation map. 
 

 
 
Fig. 2. Principal component fields 1-9 of the DEM decomposition. Percentage reflects shares 
of the corresponding eigentriples in the singular value decomposition (Eq. 6). Logarithmic 
scale is used. 
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Fig. 3. DTM denoising. Elevation maps derived from the initial DEM (a), reconstructed from 
the ET 1-100 (b), and 1-50 (c); kh maps derived from the initial DEM (d), the DEM 
reconstructed from the ET 1-100 (e), and 1-50 (f). 
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Fig. 4. Low-frequency components. Elevation maps reconstructed from the ET 1 (a), 2-3 (c), 
and 4-25 (d); (b) kh map derived from the DEM reconstructed from the ET 1. 

 

 
Fig. 5. High-frequency components. Elevation maps reconstructed from the ET 51-100 (a), 
and 101-900 (b). 


