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Abstract. Singular Spectrum Analysis is a nonparametric method, which allows one to solve
problems like decomposition of a time series into a sum of interpretable components, extraction
of periodic components, noise removal and others. In this paper, the algorithm and theory of the
SSA method are extended to analyse two-dimensional arrays (e.g. images). The 2D-SSA algorithm
based on the SVD of a Hankel-block-Hankel matrix is introduced. Another formulation of the
algorithm by means of Kronecker-product SVD is presented. Basic SSA notions such as separability
are considered. Results on ranks of Hankel-block-Hankel matrices generated by exponential, sine-
wave and polynomial 2D-arrays are obtained. An example of 2D-SSA application is presented.
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1. Introduction. The purpose of this paper is to extend the SSA (Singular Spec-
trum Analysis) algorithm and theory developed in [7] to the case of two-dimensional
arrays of data (i.e. real-valued functions of two variables defined on Cartesian grid).
The monochrome digital images are a standard example here. Singular Spectrum
Analysis is a well-known model-free technique for analysis of real-valued time series.
Basically, SSA is an exploratory method intended to perform decomposition of a
time series into a sum of interpretable components, such as trend, periodicities and
noise (see [3, 4, 7] for more details). SSA has proved to be successful for such tasks.
Moreover, there are several SSA extensions for time series forecasting, change-point
detection, missing values imputation and so on. These are the reasons to believe that
the two-dimensional extension of SSA (2D-SSA, first presented in [6]) has similar ca-
pabilities. However, its application was hampered by lack of theory, which this paper
is intended to reduce.

Suppose we observe a 2D-array of data (a real matrix) being a sum of unknown
components F = F(1) + . . . + F(m). The general task of the 2D-SSA algorithm is to
produce a decomposition

F = F̃(1) + . . . + F̃(m),(1.1)

where the terms approximate the initial components.
In §2 we present the algorithm of 2D-SSA. First of all, the algorithm is formulated

basing on the SVD of the Hankel-block-Hankel (HbH for short) matrix generated by
the input 2D-array. However, another equivalent representation of the algorithm fits
better for examination and analysis. It is based on the decomposition of a matrix into
a sum of Kronecker products.

The key step of the algorithm is grouping of terms of the SVD. This step governs
the resulting decomposition (1.1). Main problems of grouping are: possibility of
proper grouping and identification of terms in the SVD. These problems are discussed
in §2.4 and investigated in §3 and §4.
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In §3 we study the notion of separability inherited from the 1D case. Separability
means possibility to extract constituents from their sum by 2D-SSA. We also provide
a brief review of results on one-dimensional separability as the basis for results in the
2D case.

Section 4 deals with the so-called 2D-SSA rank of a 2D-array defined as the
number of SVD terms corresponding to the 2D-array and equal to the rank of a
Hankel-block-Hankel matrix generated by the 2D-array. This number is important,
as it should be taken into account when performing identification. We provide rank
calculations for different 2D-arrays: exponents, polynomials and sine-waves.

In §5 we demonstrate 2D-SSA notions by an example of periodic noise removal.

General definitions. First of all, let us review definitions that will be used
throughout this paper.

The following operator is widely used in the SSA theory and is quite helpful for
the 2D-SSA algorithm formulation.

Definition 1.1. Let A =
(
aij

)m,n

i,j=1
∈ Mm,n(Q) be a matrix over Euclidean space

Q. The hankelization operator HQ : Mm,n(Q) 7→ Mm,n(Q) is defined by

HQA =




ã1 ã2 . . . ãn

ã2 ã3 . . . ãn+1

...
...

. . .
...

ãm ãm+1 . . . ãm+n−1


 , ãk =


 ∑

(i,j)∈Dk

aij




/
#Dk,

where Dk = {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n, i + j = k + 1}.
Further, we will denote by Mm,n

def= Mm,n(R) the space of real matrices with
Frobenius inner product:

〈X, Y〉M =
m∑

i=1

n∑

j=1

xijyij ,(1.2)

where X = (xij)
m,n
i,j=1,Y = (yij)

m,n
i,j=1 ∈Mm,n.

Introduce an isomorphism between Mm,n and Rmn.
Definition 1.2. The vectorization (see, for instance, [8]) of A = (aij)

m,n
i,j=1 ∈

Mm,n is given by

vecA def= (a11, . . . , am1; a12, . . . , am2; . . . ; a1n, . . . , amn)T.(1.3)

Definition 1.3. The (m, n)-matricizing of X ∈ Rmn denoted by matrm,n(X) is
defined to be A ∈Mm,n satisfying vecA = X.

Then, recall the operation of Kronecker product [8, 9].
Definition 1.4. For A = (aij)

m,n
i,j=1 ∈ Mm,n and B = (bkl)

p,q
k,l=1 ∈ Mp,q their

Kronecker product is, by definition,

A⊗ B def=




a11B . . . a1nB
...

...
am1B . . . amnB


 .(1.4)

Finally, we need an isomorphism between classes of block matrices.
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Definition 1.5. The rearrangement R : Mmp,nq 7→ Mpq,mn is defined as

R(C) def= D ∈Mpq,mn, where
(D)i+(j−1)p,k+(l−1)m = (C)i+(k−1)p,j+(l−1)q

(1.5)

for 1 ≤ i ≤ p, 1 ≤ j ≤ q, 1 ≤ k ≤ m, 1 ≤ l ≤ n.
Note that the introduced rearrangement of a matrix is the transpose of the re-

arrangement defined in [2]. The following properties of the rearrangement are quite
useful, despite being easily checked.

• Let A = (aij)
m,n
i,j=1 ∈Mm,n and B = (bkl)

p,q
k,l=1 ∈Mp,q. Then

R(A⊗ B) = vecB(vecA)T.(1.6)

• For any C ∈Mmp,nq

‖R(C)‖M = ‖C‖M.(1.7)

2. 2D-SSA.

2.1. Basic algorithm. Consider a 2D-array of data

F =




f(0, 0) f(0, 1) . . . f(0, Ny − 1)
f(1, 0) f(1, 1) . . . f(1, Ny − 1)
...

...
. . .

...
f(Nx − 1, 0) f(Nx − 1, 1) . . . f(Nx − 1, Ny − 1)


 .

The algorithm is based on the SVD of a Hankel-block-Hankel (HbH) matrix con-
structed from the 2D-array. The dimensions of the HbH matrix are defined by the
window sizes (Lx, Ly), which are restricted by 1 ≤ Lx ≤ Nx, 1 ≤ Ly ≤ Ny and
1 < LxLy < NxNy. Let Kx = Nx − Lx + 1 and Ky = Ny − Ly + 1 for convenience of
notation.

Embedding
At this step, the input 2D-array is arranged into a Hankel-block-Hankel matrix

of size LxLy ×KxKy:

W =




H0 H1 H2 . . . HKy−1

H1 H2 H3 . . . HKy

H2 H3 . .. . ..
...

...
... . .. . ..

...
HLy−1 HLy . . . . . . HNy−1




,(2.1)

where

Hj =




f(0, j) f(1, j) . . . f(Kx − 1, j)
f(1, j) f(2, j) . . . f(Kx, j)
...

...
. . .

...
f(Lx − 1, j) f(Lx, j) . . . f(Nx − 1, j)


 .

Obviously, there is the one-to-one correspondence between 2D-arrays of size Nx×Ny

and HbH matrices (2.1). Let us call the matrix W a Hankel-block-Hankel matrix
generated by the 2D-array F.
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SVD
Then, the SVD is applied to the Hankel-block-Hankel matrix (2.1):

W =
d∑

i=1

√
λiUiVi

T.(2.2)

Here λi (1 ≤ i ≤ d) are the non-zero eigenvalues of the matrix WWT arranged in
decreasing order λ1 ≥ λ2 ≥ . . . ≥ λd > 0; {U1, . . . , Ud} is a system of orthonormal in
RLxLy eigenvectors of the matrix WWT; {V1, . . . , Vd} is an orthonormal system of
vectors in RKxKy , hereafter called factor vectors. The factor vectors can be expressed
as follows: Vi = WTUi/

√
λi. The triple (

√
λi, Ui, Vi) is said to be the ith eigentriple.

Note that
√

λi is called a singular value of the matrix W.
Grouping
After specifying m disjoint subsets of indices Ik (groups of eigentriples),

I1 ∪ I2 ∪ . . . ∪ Im = {1, . . . , d},(2.3)

one obtains the decomposition of the HbH matrix

W =
m∑

k=1

WIk
, where WI =

∑

i∈I

√
λiUiVi

T.(2.4)

This is the most important step of the algorithm as it controls the resulting decom-
position of the input 2D-array. The problem of proper grouping of the eigentriples
will be discussed further (in §2.4).

Projection
Projection step is necessary in order to obtain a decomposition (1.1) of the input

2D-array from the decomposition (2.4) of the HbH matrix. Firstly, matrices WIk
are

reduced to Hankel-block-Hankel matrices W̃Ik
. Secondly, 2D-arrays F̃Ik

are obtained
from W̃Ik

by the one-to-one correspondence.
The matrices W̃Ik

, in their turn, are obtained by orthogonal projection of matrices
WIk

in Frobenius norm (1.2) onto the linear space of block-Hankel LxLy × KxKy

matrices with Hankel Lx ×Kx blocks. The orthogonal projection of

Z =




Z1,1 Z1,2 . . . Z1,Ky

Z2,1 Z2,2 . . . Z2,Ky

...
...

. . .
...

ZLy,1 ZLy,2 . . . ZLy,Ky


 , Zi,j ∈MLx,Kx ,

can be expressed as a two-step hankelization

Z̃ = HMLx,Kx




HR Z1,1 HR Z1,2 . . . HR Z1,Ky

HR Z2,1 HR Z2,2 . . . HR Z2,Ky

...
...

. . .
...

HR ZLy,1 HR ZLy,2 . . . HR ZLy,Ky


 .

In other words, the hankelization is applied at first to the blocks (within-block han-
kelization) and then to the whole matrix, i.e. the blocks on secondary diagonals are
averaged between themselves (between-block hankelization). Certainly, the hankeliza-
tion operators can be applied in the reversed order.
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Thus, the result of the algorithm is

F =
m∑

k=1

F̃Ik
.(2.5)

A component F̃Ik
is said to be the reconstructed by eigentriples with indices Ik 2D-

array.

2.2. Algorithm: Kronecker products. Let us examine the algorithm in terms
of tensors and matrix Kronecker products.

Embedding
Columns of the Hankel-block-Hankel matrix W generated by the 2D-array F can

be treated as vectorized Lx × Ly submatrices (moving 2D windows) of the input
2D-array F (see Fig. 2.1).

1 lpppp
Ny

1

k p p p p p p p p p

Nx

-¾

6
?

Ly

LxFk,l

Fig. 2.1. Moving 2D windows

More precisely, if Wm stands for the mth column of the Hankel-block-Hankel
matrix W = [W1 : . . . : WKxKy ], then

Wk+(l−1)Kx
= vec(Fk,l) for 1 ≤ k ≤ Kx, 1 ≤ l ≤ Ky,(2.6)

where Fk,l denotes the Lx × Ly submatrix beginning from the entry (k, l)

Fk,l =




f(k − 1, l − 1) . . . f(k − 1, l + Ly − 2)
...

. . .
...

f(k + Lx − 2, l − 1) . . . f(k + Lx − 2, l + Ly − 2)


 .(2.7)

An analogous equality holds for the rows of the Hankel-block-Hankel matrix W.
Let Wn be the nth row of the matrix W = [W 1 : . . . : WLxLy ]T. Then

W i+(j−1)Lx = vec(Fi,j) for 1 ≤ i ≤ Lx, 1 ≤ j ≤ Ly,(2.8)

where Fi,j denotes the Kx ×Ky submatrix beginning from the entry (i, j).
Basically, the HbH matrix is a 2D representation of the 4-order tensor X ij

kl

X ij
kl = (Fk,l)i,j = (Fi,j)k,l = f(i + k − 2, j + l − 2)(2.9)

and the SVD of the matrix W is an orthogonal decomposition of this tensor. Another
2D representation of the tensor X ij

kl can be obtained by the rearrangement (1.5) of
W:

X = R(W) =




F1,1 F1,2 . . . F1,Ky

...
...

. . .
...

FKx,1 FKx,2 . . . FKx,Ky


 .(2.10)
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Let us call this block LxKx × LyKy matrix the 2D-trajectory matrix and formulate
the subsequent steps of the algorithm in terms of 2D-trajectory matrices.

SVD
First of all, recall that the eigenvectors {Ui}d

i=1 form an orthonormal basis of
span(W1, . . . , WKxKy

) and the factor vectors {Vi}d
i=1 form an orthonormal basis of

span(W 1, . . . ,WLxLy ). Consider matrices

Ψi = matrLx,Ly (Ui) ∈MLx,Ly ,

Φi = matrKx,Ky
(Vi) ∈MKx,Ky

,

and call Ψi and Φi eigenarrays and factor arrays respectively. It is easily seen
that systems {Ψi}d

i=1 and {Φi}d
i=1 form orthogonal bases of span({Fk,l}Kx,Ky

k,l=0 ) and

span({Fi,j}Lx,Ly

i,j=0 ) (see (2.6) and (2.8)). Moreover, by (1.6) one can rewrite the SVD
step of the algorithm as a decomposition of the 2D-trajectory matrix

X =
d∑

i=1

Xi =
d∑

i=1

√
λiΦi ⊗Ψi.(2.11)

The decomposition is biorthogonal and has the same optimality properties as the SVD
(see [2]). We will call it Kronecker-product SVD (KP-SVD for short).

Grouping
Grouping step in terms of Kronecker products has exactly the same form as (2.4).

Choosing m disjoint subsets Ik (2.3) one obtains the grouped expansion

X =
m∑

k=1

XIk
, where XI =

∑

i∈I

√
λiΦi ⊗Ψi.(2.12)

Note that it is more convenient in practice to perform the grouping step on the base
of Ψi and Φi (instead of Ui and Vi), since they are two-dimensional as well as the
input 2D-array.

Projection
It follows from (2.11) and (1.6) that matrices XIk

are rearrangements of cor-
responding matrices WIk

. Since the rearrangement R preserves Frobenius inner
product, the resulting 2D-arrays F̃Ik

in (2.5) can be expressed through orthogonal
projections in Frobenius norm of the matrices XIk

onto the linear subspace of 2D-
trajectory matrices (2.10) and the one-to-one correspondence between 2D-arrays and
matrices like (2.10).

2.3. Special cases. Here we will consider some special cases of 2D-SSA. It
happens that these special cases describe most of well-known SSA-like algorithms.

2.3.1. 1D sequences: SSA for time series. The first special case occurs
when the input array has only one dimension, namely it is a one-dimensional finite
real-valued sequence (1D-sequence for short):

F = (f(0, 0), . . . , f(Nx − 1, 0))T.(2.13)

In this case, the 2D-SSA algorithm coincides with the original SSA algorithm [7]
applied to the same data. Let us briefly describe the SSA algorithm in its standard
notation denoting f(i, 0) by fi and Nx by N .
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The only parameter L = Lx is called the window length. Let K = N − L + 1 =
Kx. Algorithm consists of four steps (the same as those of 2D-SSA). The result of
Embedding step is the Hankel matrix

W =




f0 f1 f2 . . . fK−1

f1 f2 f3 . . . fK

f2 f3 f4 . . . fK+1

...
...

...
. . .

...
fL−1 fL fL+1 . . . fN−1




.(2.14)

This matrix is called the trajectory matrix1. SVD and Decomposition steps are exactly
the same as in the 2D case. Projection in the 1D case is formulated as one-step
hankelization HR.

2.3.2. Extreme window sizes. Let us return to a general 2D-array case when
Nx, Ny > 1. Consider extreme window sizes: (a) Lx = 1 or Lx = Nx; (b) Ly = 1 or
Lx = Ny.

1. If conditions (a) and (b) are met both, then due to condition 1 < LxLy <
NxNy we get (Lx, Ly) = (Nx, 1) or (Lx, Ly) = (1, Ny). In this case, the HbH
matrix W coincides with the 2D-array F itself or with its transpose. Thus,
the algorithm of 2D-SSA is reduced to a grouping of the SVD components of
the 2D-array F. This technique is used in image processing and it works well
for 2D-arrays that are products of 1D-sequences (f(i, j) = piqj).

2. Consider the case when either (a) or (b) is met. Let it be (b). Without loss
of generality, we can assume that Ly = 1 and 1 < Lx < Nx. Then the HbH
matrix W generated by F consists of stacked Hankel matrices

W = [H0 : H1 : . . . : HNy ]

and we come to the algorithm of MSSA [4, 6, 10] for simultaneous decom-
position of multiple time series. More precisely, we treat the 2D-array as a
set of time series arranged into columns and apply the MSSA algorithm with
parameter Lx to this set of series.
Practically, MSSA is more preferred than the general 2D-SSA if we expect
only one dimension of the input 2D-array to be ‘structured’.

2.3.3. Product of 1D sequences. In §2.3.1, we have shown that SSA for time
series can be considered as a special case of the 2D-SSA. However, we can estab-
lish another relation between SSA and 2D-SSA. Consider the outer product of 1D-
sequences as an important particular case of 2D-arrays: f(i, j) = piqj . Products
of 1D-sequences are of great importance for the general case of 2D-SSA as we can
study properties (e.g. separability) of sums of products of 1D-sequences based on
properties of the factors. The main fact here is that a 2D-SSA decomposition of the
2D-array F =

(
f(i, j)

)Nx−1,Ny−1

i,j=0
can be expressed through SSA decompositions of

the 1D-sequences (pi)Nx−1
i=0 and (qj)

Ny−1
j=0 .

In matrix notation, the product of two 1D-sequences P = (p0, . . . , pNx−1)T and
Q = (q0, . . . , qNy−1)T is F = PQT. Let us fix window sizes (Lx, Ly) and denote by

1In the SSA literature, the trajectory matrix is usually denoted by X
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W(p) and W(q) the Hankel matrices generated by P and Q respectively:

W(p) =




p0 p1 . . . pKx−1

p1 p2 . . . pKx

...
...

. . .
...

pLx−1 pLx
. . . pNx−1


 , W(q) =




q0 q1 . . . qKy−1

q1 q2 . . . qKy

...
...

. . .
...

qLy−1 qLy
. . . qNy−1


 .

Then the Hankel-block-Hankel matrix W generated by the 2D-array F is

W = W(q) ⊗W(p).

Thus, the following theorem holds.
Theorem 2.1 ([9, Th. 13.10]). Let W(p) and W(q) have singular value decom-

positions

W(p) =
dp∑

m=1

√
λ

(p)
m U

(p)
m V

(p)
m

T
, W(q) =

dq∑
n=1

√
λ

(q)
n U

(q)
n V

(q)
n

T
.(2.15)

Then

W =
dp∑

m=1

dq∑
n=1

√
λ

(p)
m λ

(q)
n

(
U (q)

n ⊗ U (p)
m

)(
V (q)

n ⊗ V (p)
m

)T

(2.16)

yields a singular value decomposition of the matrix W, after rearranging of its terms
(in decreasing order of λ

(p)
m λ

(q)
n ).

2.4. Comments on Grouping step. Let us now discuss perhaps the most
sophisticated point of the algorithm: grouping of the eigentriples. Rules for grouping
are not defined within the 2D-SSA algorithm and this step is supposed to be performed
by hand, on the base of theoretical results. The way of grouping depends on the task
one has to solve. The general task of 2D-SSA is to extract additive components from
the observed 2D-array. Let us try to formalize this task.

Suppose we observe a sum of 2D-arrays: F = F(1) + . . . + F(m). For example,
F is a sum of a smooth surface, regular fluctuations and noise. When applying the
2D-SSA algorithm to F, we have to group somehow the eigentriples (i.e. to group the
terms of (2.2) or (2.11)) at Grouping step. The problems arising here are:

• Is it possible to group the eigentriples providing the initial decomposition of
F into F(k)?

• How to identify the eigentriples corresponding to a component F(k)?
In order to answer the first question, we introduce the notion of separability of the

2D-arrays F(1), . . . , F(m) by 2D-SSA (following the 1D case [7]) as the possibility to
extract them from their sum. In other words, we call the set of 2D-arrays separable if
the answer to the first question is positive. In §3.1 we present the strict definition of
separability and study its properties. In §3.2 we review some facts on separability of
time series (the 1D-SSA case), establish a link between the 1D-SSA and 2D-SSA cases
and deduce several important examples of 2D-SSA separability (§3.3). For practical
reasons, we discuss approximate and asymptotic separability.

If components are separable, then we come to the second question: how to per-
form an appropriate grouping? The main idea is based on the following fact: the
eigenarrays {Ψi}i∈Ik

and factor arrays {Φi}i∈Ik
corresponding to a component F(k)

can be expressed as linear combinations of submatrices of the component. We can
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conclude that they repeat the form of the component F(k). For example, smooth
surfaces produce smooth eigenarrays (factor arrays), periodic components generate
periodic eigenarrays, and so on. In §3.4 we also describe a tool of weighted correla-
tions for checking separability a-posteriori. This tool can be an additional guess for
grouping.

Another matter of concern is the number of eigentriples we have to gather to
obtain a component F(k). This number is called the 2D-SSA rank of the 2D-array
F(k) and is equal to the rank of the HbH matrix generated by F(k). Actually, we are
interested in separable 2D-arrays. Clearly, they have rank-deficient HbH matrices in
non-trivial case. This class of 2D-arrays has an important subclass: the 2D-arrays
keeping their 2D-SSA rank constant within a range of window sizes. In the 1D case
(see §2.3.1) the HbH matrices are Hankel and the subclass coincides with the whole
class. For the general 2D case it is not so. However, 2D-arrays from the defined above
subclass are of considerable interest since the number of eigentriples they produce
does not depend on the choice of window sizes. §4 contains several examples of such
2D-arrays and rank calculations for them.

3. 2D separability. This section deals with the problem of separability stated
in §2.4 as a possibility to extract terms from the observed sum. We consider the
problem of separability for two 2D-arrays, F(1) and F(2). Let us fix window sizes
(Lx, Ly) and consider the SVD of the HbH matrix W generated by F = F(1) + F(2):

W =
d∑

i=1

√
λiUiVi

T.

If we denote W(1) and W(2) the Hankel-block-Hankel matrices generated by F(1) and
F(2), then the problem of separability can be formulated as follows: does there exist
such a grouping {I1, I2} that

W(1) =
∑

i∈I1

√
λiUiVi

T and W(2) =
∑

i∈I2

√
λiUiVi

T.(3.1)

The important point to note here is that if W has equal singular values, then
the SVD of W is not unique. For this reason, we introduce two notions (in the same
fashion as in [7]): strong and weak separability. Strong separability means that any
SVD of the matrix W allows the desired grouping, while weak separability means
that there exists such an SVD.

3.1. Basic definitions. Let L(m,n) = L(m,n)(G) denote the linear space spanned
by the m×n submatrices of a 2D-array G. Particulary, for fixed window sizes (Lx, Ly),
we have

L(Lx,Ly)(F) = span({Fk,l}) and L(Kx,Ky)(F) = span({Fi,j}).
Definition 3.1. Two 2D-arrays F(1) and F(2) with equal sizes are weakly

(Lx, Ly)-separable if

L(Lx,Ly)(F(1)) ⊥ L(Lx,Ly)(F(2)) and L(Kx,Ky)(F(1)) ⊥ L(Kx,Ky)(F(2)).

Due to properties of SVDs, Definition 3.1 means that if F(1) and F(2) are weakly
separable, then the sum of SVDs of W(1) and W(2) (3.1) is an SVD of the W. We
also introduce the definition of strong separability.
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Definition 3.2. We call two 2D-arrays F(1) and F(2) strongly separable if they
are weakly separable and the sets of singular values of their Hankel-block-Hankel ma-
trices do not intersect.

Hereafter we will speak mostly about the weak separability and will say ‘separa-
bility’ for short.

Remark 3.3. The set of 2D-arrays separable from a fixed 2D-array F is a linear
space.

Since the exact separability is not feasible, let us introduce the approximate sep-
arability as almost orthogonality of the corresponding subspaces. Consider 2D-arrays
F and G and fix window sizes (Lx, Ly). As in (2.7), Fk1,l1 , Gk2,l2 stand for Lx × Ly

submatrices of F and G and Fi1,j1 , Gi2,j2 do for Kx×Ky submatrices. Let us introduce
a distance between two 2D-arrays in order to measure the approximate separability:

ρ(Lx,Ly)(F, G) def= max(ρL, ρK),(3.2)

where

ρK = max
(k1,l1),(k2,l2)∈JK

∣∣∣∣
〈Fk1,l1 ,Gk2,l2〉M

‖Fk1,l1‖M‖Gk2,l2‖M

∣∣∣∣ , JK = {1, . . . , Kx} × {1, . . . , Ky};

ρL = max
(i1,j1),(i2,j2)∈JL

∣∣∣∣∣

〈
Fi1,j1 , Gi2,j2

〉
M

‖Fi1,j1‖M‖Gi2,j2‖M

∣∣∣∣∣ , JL = {1, . . . , Lx} × {1, . . . , Ly}.

Remark 3.4. The 2D-arrays F and G are separable iff ρ(Lx,Ly)(F, G) = 0.
A quite natural way to deal with approximate separability is studying asymptotic

by array sizes separability of 2D-arrays, namely ‘good’ approximate separability for
relatively big 2D-arrays. Consider two infinite 2D-arrays F = (fij)

∞,∞
i,j=0 and G =

(gij)
∞,∞
i,j=0. Let F|m,n and G|m,n denote finite submatrices of infinite 2D-arrays F and

G: F|m,n = (fij)
m−1,n−1
i,j=0 , G|m,n = (gij)

m−1,n−1
i,j=0 .

Definition 3.5. F and G are said to be asymptotically separable if

lim
Nx,Ny→∞

ρ(Lx,Ly)(F|Nx,Ny ,G|Nx,Ny ) = 0(3.3)

for any Lx = Lx(Nx, Ny) and Ly = Ly(Nx, Ny) such that Lx,Kx, Ly, Ky → ∞ as
Nx, Ny →∞.

3.2. Separability of 1D sequences. As well as the original 1D-SSA algorithm
can be treated as a special case of 2D-SSA, the notion of L-separability of time series
(originally introduced in [7]) is a special case of (Lx, Ly)-separability.

Remark 3.6. Time series F(1) = (f (1)
0 , . . . , f

(1)
N−1)

T and F(2) = (f (2)
0 , . . . , f

(2)
N−1)

T

are L-separable if they are (L, 1)-separable as 2D-arrays.
Let us now give several examples of the (weak) L-separability, which is thoroughly

studied in [7].
Example 3.7. The sequence F = (f0, . . . , fN−1)T with fn = cos (2πωn + ϕ)

is L-separable from a non-zero constant sequence (c, . . . , c)T if Lω and Kω, where
K = N − L + 1, are integers.

Example 3.8. Two cosine sequences of length N given by

f (1)
n = cos (2πω1n + ϕ1) and f (2)

n = cos (2πω2n + ϕ2)

are L-separable if ω1 6= ω2, 0 < ω1, ω2 ≤ 1/2 and Lω1, Lω2,Kω1,Kω2 are integers.
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In general, there are only a small number of exact separability examples. Hence,
we come to consideration of approximate separability. It is studied with the help of
asymptotic separability of time series first introduced in [7]. Asymptotic separability
is defined in the same fashion as that in the 2D case (see Definition 3.5). The only
difference is that we let just one dimension (and parameter) tend to infinity (because
another dimension is fixed).

Example 3.9. Two cosine sequences given by

f (l)
n =

m∑

k=0

c
(l)
k cos(2πω

(l)
k n + ϕ

(l)
k ), 0 < ω

(l)
k ≤ 1/2, l = 1, 2,(3.4)

with different frequencies are asymptotically separable.
In Table 3.1, one can see a short summary on asymptotic separability of time

series.

Table 3.1
Asymptotic separability

const cos exp exp cos poly
const − + + + −
cos + + + + +
exp + + + + +

exp cos + + + + +
poly − + + + −

In this table, const stands for non-zero constant sequences, cos does for cosine se-
quences (3.4), exp denotes sequences exp(αn), exp cos stands for eαn cos (2πωn + φ)
and poly does for polynomial sequences. Note that conditions of separability are omit-
ted in the table. For more details, such as conditions, convergence rates, and other
types of separability (e.g. stochastic separability of a deterministic signal from the
white noise), see [7].

3.3. Products of 1D sequences. Let us study separability properties for prod-
ucts of 1D-sequences (introduced in §2.3.3). Consider four 1D-sequences

P(1) = (p(1)
0 , . . . , p

(1)
Nx−1)

T, Q(1) = (q(1)
0 , . . . , q

(1)
Ny−1)

T,

P(2) = (p(2)
0 , . . . , p

(2)
Nx−1)

T, Q(2) = (q(2)
0 , . . . , q

(2)
Ny−1)

T.

Proposition 3.10. If P(1) and P(2) are Lx-separable or sequences Q(1) and Q(2)

are Ly-separable, then their products F(1) = P(1)(Q(1))T and F(2) = P(2)(Q(2))T are
(Lx, Ly)-separable.

Proof. First of all, let us notice that submatrices of the 2D-arrays are products
of subvectors of 1D-sequences

F(1)
k1,l1

= (p(1)
k1−1, . . . , p

(1)
k1+Lx−2)

T(q(1)
l1−1, . . . , q

(1)
l1+Ly−2),

F(2)
k2,l2

= (p(2)
k2−1, . . . , p

(2)
k2+Lx−2)

T(q(2)
l2−1, . . . , q

(2)
l2+Ly−2).

(3.5)

Let us recall an important feature of Frobenius inner product:
〈
ABT, CDT

〉
M = 〈A,C〉2 〈B,D〉2 ,(3.6)

where A, B, C, and D are vectors.
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Applying (3.6) to (3.5), we obtain the orthogonality of all Lx × Ly submatrices
of 2D-arrays:

〈
F(1)

k1,l1
, F(2)

k2,l2

〉
M

= 0.

Likewise, all their Kx×Ky submatrices are orthogonal too. According to Remark 3.4,
we conclude that the 2D-arrays F(1) and F(2) are separable, and the proof is complete.

Furthermore, we can generalize Proposition 3.10 to approximate and asymptotic
separability.

Lemma 3.11. Under the assumptions of Proposition 3.10,

ρ(Lx,Ly)(F(1), F(2)) ≤ ρLx(P(1), P(2))ρLy (Q(1), Q(2)).

Proof. Equalities (3.5) and (3.6) make the proof obvious.
Proposition 3.12. Let F (1) and F (2) be products of infinite 1D-sequences:

F (1) = P(1)(Q(1))T, F (2) = P(2)(Q(2))T,

P(j) = (p(j)
0 , . . . , p(j)

n , . . .)T and Q(j) = (q(j)
0 , . . . , q(j)

n , . . .)T.

If P(1),P(2) or Q(1),Q(2) are asymptotically separable, then F (1) and F (2) are asymp-
totically separable too.

Proof. The proposition follows immediately from Lemma 3.11.
The following example of asymptotic separability can be shown using Proposi-

tion 3.12 and Remark 3.3.
Example 3.13. The 2D-array given by f (1)(i, j) = cos(2πω1i) ln(j + 1) + ln(i +

1) cos(2πω2j) is asymptotically separable from a constant 2D-array f (2)(i, j) = const.
Example 3.13 demonstrates that separability in the 2D case is more varied than

in the 1D case. For instance, nothing but periodic 1D-sequences are separable from a
constant sequence.

The next example is an analogue of Example 3.9.
Example 3.14. Two 2D sine-wave arrays given by

f (l)(i, j) =
m∑

k=1

c
(l)
k cos(2πω

(l)
1k i + ϕ

(l)
1k) cos(2πω

(l)
2k j + ϕ

(l)
2k), l = 1, 2,

with different frequencies are asymptotically separable by 2D-SSA.
However, the problem of lack of strong separability in presence of weak separa-

bility appears more frequently in the 2D case. The wider is the range of eigenvalues
of the HbH matrix corresponding to a 2D-array, the more likely is mixing of com-
ponents produced by the 2D-array and other constituents. This becomes a problem
at Grouping step. For example, if two 1D-sequences have eigenvalues from the range
[λ2, λ1], then the range of eigenvalues of their product, by Proposition 2.1, is wider:
[λ2

2, λ
2
1].

3.4. Checking the separability: weighted correlations. Following the 1D
case, we introduce a necessary condition of separability, which can be applied in
practice.



2D-EXTENSION OF SINGULAR SPECTRUM ANALYSIS 13

Definition 3.15. A weighted inner product of 2D-arrays F(1) and F(2) is defined
as follows:

〈
F(1), F(2)

〉
w

def=
Nx−1∑

i=0

Ny−1∑

j=0

f (1)(i, j) · f (2)(i, j) · wx(i) · wy(j),

where

wx(i) = min(i + 1, Lx,Kx, Nx − i) and wy(j) = min(j + 1, Ly,Ky, Ny − j).

In fact, the functions wx(i) and wy(j) define the number of entries on secondary
diagonals of Hankel Lx ×Kx and Ly ×Ky matrices respectively. More precisely,

wx(i) = #
{
(k, l) : 1 ≤ k ≤ Kx, 1 ≤ l ≤ Lx, k + l = i + 1

}
,

wy(j) = #
{
(k, l) : 1 ≤ k ≤ Ky, 1 ≤ l ≤ Ly, k + l = j + 1

}
.

Hence, for a Hankel-block-Hankel matrix W generated by F, the product wx(i)wy(j)
is equal to the number of entries in W corresponding to the entry (i, j) of the 2D-
array F. The same holds for the number of entries in a 2D-trajectory matrix X. This
observation implies the following proposition.

Proposition 3.16.
〈
F(1), F(2)

〉
w

=
〈
X(1),X(2)

〉
M

=
〈
W(1),W(2)

〉
M

.

With the help of the weighted inner product, we can formulate a necessary con-
dition for separability.

Proposition 3.17. If F(1) and F(2) are separable, then
〈
F(1),F(2)

〉
w

= 0.
Finally, we introduce weighted correlations to measure approximate separability

and the matrix of weighted correlations to provide an additional information useful
for grouping.

Definition 3.18. A weighted correlation (w-correlation) ρw between two 2D-
arrays F(1) and F(2) is defined as

ρw(F(1), F(2)) =

〈
F(1),F(2)

〉
w

‖F(1)‖w‖F(2)‖w
.

Consider the 2D-array F and apply 2D-SSA with parameters (Lx, Ly). If we
choose the maximal grouping (2.3), namely m = d and Ik = {k}, 1 ≤ k ≤ d, then
each F̃Ik

is called the kth elementary reconstructed component and the matrix of
weighted correlations R = (rij)d

i,j=1 is given by

rij = |ρw(F̃Ii , F̃Ij )|.(3.7)

For an example of application see §5.
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4. 2D-SSA ranks of 2D-arrays. Examples of calculation.

4.1. Basic properties. Let us first introduce a definition of the 2D-SSA rank.
Definition 4.1. The (Lx, Ly)-rank (2D-SSA rank for window sizes (Lx, Ly)) of

the 2D-array F is defined to be

rankLx,Ly (F) def= dimL(Lx,Ly) = dimL(Kx,Ky) = rankW.

It is immediate that the (Lx, Ly)-rank is equal to the number of components in
the SVD (2.2) of the Hankel-block-Hankel matrix generated by F. There is another
way to express the rank through the 2D-trajectory matrix (2.10).

Lemma 4.2. If for fixed window sizes (Lx, Ly) there exists representation

X =
m∑

i=1

Ai ⊗ Bi, Bi ∈MLx,Ly
, Ai ∈MKx,Ky

,(4.1)

then rankLx,Ly
F does not exceed m. Furthermore, if each system {Ai}m

i=1, {Bi}m
i=1 is

linearly independent, then rankLx,Ly
(F) = m.

Proof. The proof is evident, since equality (4.1) can be rewritten as

W =
m∑

i=1

vecBi(vecAi)T

by (1.6).
By Theorem 2.1, the 2D-SSA rank of a product of 1D-sequences 2D-SSA rank is

equal to the product of the ranks:

rankLx,Ly (PQT) = rankLx(P) rankLy (Q),(4.2)

where rankL(·) stands for rankL,1(·).
For a sum of products of 1D-sequences F =

n∑
i=1

P(i)(Q(i))T, the 2D-SSA rank is

not generally equal to the sum of products of ranks due to possible linear dependence
of vectors. In order to calculate 2D-SSA ranks for this kind of 2D-arrays, the following
lemma may be useful.

Lemma 4.3. If for fixed window sizes (Lx, Ly) there exist linearly independent
systems {Aj}n

j=1 and {Bi}m
i=1 such that

X =
m,n∑

i,j=1

cijAj ⊗ Bi, Bi ∈MLx,Ly , Aj ∈MKx,Ky ,(4.3)

then rankLx,Ly (F) = rankC, where C = (cij)
m,n
i,j=1.

Proof. Let us rewrite the condition (4.3) in the same way as in the proof of
Lemma 4.2:

W =
m,n∑

i,j=1

cij vecBi(vecAj)T.

If we set A = [vecA1 : . . . : vecAn] and B = [vecB1 : . . . : vecBm], then W = BCAT.
Since A and B have linearly independent columns, the ranks of W and C coincide.
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4.2. Ranks of time series. In the 1D case, class of series having constant rank
within a range of window length is called time series of finite rank [7]. This class
mostly consist of sums of products of polynomials, exponents and cosines:

fn =
d′∑

k=1

P (k)
mk

(n) ρn
k cos(2πωkn + ϕk) +

d∑

k=d′+1

P (k)
mk

(n) ρn
k .(4.4)

Here 0 < ωk < 0.5, ρk 6= 0, and P
(k)
l are polynomials of degree l. The time series

(4.4) form the class of time series governed by linear recurrent formulae (see [3, 7]).
It happens that SSA ranks of time series like (4.4) can be explicitly calculated.
Proposition 4.4. Let a time series FN = (f0, ..., fN−1) be defined in (4.4) with

(ωk, ρk) 6= (ωl, ρl) for 1 ≤ k, l ≤ d′ and ρk 6= ρl for d′ < k, l ≤ d. Then rankL(FN ) is
equal to

r = 2
d′∑

k=1

(mk + 1) +
d∑

k=d′+1

(mk + 1)(4.5)

if L ≥ r and K ≥ r.
Proof. Equality (4.4) can be rewritten as a sum of complex exponents:

fn =
d′∑

k=1

P (k)
mk

(n) (αk(λk)n + βk(λ′k)n) +
d∑

k=d′+1

P (k)
mk

(n) ρn
k ,

where λk = ρke2πiωk , λ′k = ρke−2πiωk and αk, βk 6= 0. The latter equality yields a
canonical representation (see [1, §8]) of the Hankel matrix W with rank r. Under the
stated conditions on L and K, rankW = r by [1, Theorem 8.1].

4.3. Calculation of 2D-SSA ranks. Proposition 4.4 together with (4.2) gives
possibility to calculate 2D-SSA ranks for 2D-arrays that are products of 1D-sequences.
However, the general 2D case is much more complicated. In this section, we introduce
results concerning 2D-SSA ranks for 2D exponential, polynomial and sine-wave arrays.

In the examples below, one can observe the effect that the 2D-SSA rank of a
2D-array given by f(i, j) = pi+j is equal to the SSA rank of the sequence (pi). It is
not surprising, since 2D-SSA is in general invariant to rotation (and to other linear
maps) of arguments of a 2D-function f(i, j).

4.3.1. Exponent. The result on rank of a sum of 2D exponents is quite simple.
Proposition 4.5. For an exponential 2D-array F =

(
f(i, j)

)Nx−1,Ny−1

i,j=0
defined

by

f(i, j) =
m∑

n=1

ckρi
nµj

n, ρn, µn 6= 0,(4.6)

rankLx,Ly (F) = m if Lx, Ly,Kx,Ky ≥ m and (ρl, µl) 6= (ρk, µk) for l 6= k.
Proof. The proof is based on Lemma 4.2. Let us express entries of the matrix X

using equality (2.9):

(Fk,l)i,j = f(i + k − 2, j + l − 2) =
m∑

n=1

cnρ(i−1)
n µ(j−1)

n ρ(k−1)
n µ(l−1)

n .(4.7)
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It is easy to check that equality (4.7) defines decomposition

X =
m∑

n=1

An ⊗ Bn, where

An = (ρ0
n, . . . , ρ(Kx−1)

n )T(µ0
n, . . . , µ(Ky−1)

n ),
Bn = (ρ0

n, . . . , ρ(Lx−1)
n )T(µ0

n, . . . , µ(Ly−1)
n ).

Obviously, each system {Ai}m
i=1, {Bi}m

i=1 is linearly independent. Applying Lemma 4.2
finishes the proof.

4.3.2. Polynomials. Let Pm be a polynomial of degree m:

Pm(i, j) =
m∑

s=0

m−s∑
t=0

gsti
s jt

and at least one of leading coefficients gs,m−s for s = 0, . . . ,m is non-zero. Consider
the 2D-array F of sizes Nx, Ny > 2m + 1 with f(i, j) = Pm(i, j).

Proposition 4.6. If Lx, Ly, Kx, Ky ≥ m + 1, then

rankLx,Ly (F) = rankm+1,m+1(G′),

where

G′ =
(

G′′ 0
0 0m×m

)
, G′′ =




g′00 . . . g′0m
... . ..

g′m0 0


 , g′st = gsts! t!.

In addition, the following inequality hold:

m + 1 ≤ rankLx,Ly (F) ≤
{

(m/2 + 1)2 , for even m,
((m + 1)/2 + 1) (m + 1)/2, for odd m.

(4.8)

Proof. The first part of the proposition is proved in the same way as Propo-
sition 4.5 except for using Lemma 4.3 instead of Lemma 4.2. Let us apply Taylor
formula

(Fk,l)i,j = Pm(i + k − 2, j + l − 2) =

=
m∑

s=0

m∑
t=0

(i− 1)s(j − 1)t 1
s! t!

(
∂s+tPm

∂is∂jt

)
(k − 1, l − 1) =

=
m∑

s=0

m∑
t=0

(i− 1)s

s!
(j − 1)t

t!

m−s∑
u=0

m−t∑
v=0

gu+s,v+t(u + s)!(v + t)!
(k − 1)u

u!
(l − 1)v

v!
.

(4.9)

If we set g′st = 0 for s + t > m + 1, then we can rewrite (4.9) as

X =
m∑

s,t,u,v=0

g′u+s,v+tAu+(m+1)v ⊗ Bs+(m+1)t, where(4.10)

Au+(m+1)v =
1

u! v!
(
0u, . . . , (Kx − 1)u

)T(
0v, . . . , (Ky − 1)v

)
for 0 ≤ u, v ≤ m

Bs+(m+1)t =
1

s! t!
(
0s, . . . , (Lx − 1)s

)T(
0t, . . . , (Ly − 1)t

)
for 0 ≤ s, t ≤ m.
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Let W(g) be the Hankel-block-Hankel matrix generated by G′ with window sizes
(m + 1,m + 1). Then (4.10) can be rewritten as

X =
(m+1)2−1∑

i,j=0

(W(g))jiAi ⊗ Bj .

The systems {Ai}(m+1)2−1
i=0 and {Bj}(m+1)2−1

j=0 are linearly independent due to restric-
tions on Lx, Ly. By Lemma 4.3, the first part of the proposition is proved.

The bounds in (4.8) can be proved using the fact that

rankm+1,m+1(G′) = dimL(m+1,m+1)(G′) = dim span
({

G′k,l

}m+1,m+1

k,l=1

)
,

where G′k,l is the (m + 1)× (m + 1) submatrix of G′ beginning from the entry (k, l).
Define by Tn the space of (m + 1)× (m + 1) matrices with zero entries below the nth
secondary diagonal:

Tn
def= {A = (aij)

m,m
i,j=0 ∈Mm+1,m+1 : aij = 0 for i + j > n}.

Then G′k,l belongs to Tn for n ≥ m− (k + l) + 2 and does not, in general, for smaller
n. Let us introduce

Cn
def= span

({
G′k,l

}
k+l=m−n+2

)
⊆ Tn,

Sn
def= span(C0, . . . , Cn) = span(Sn−1, Cn) ⊆ Tn.

Then L(m+1,m+1)(G′) = Sm.
By the theorem conditions, there exists i such that gi,m−i 6= 0. Hence, there exist

C0, . . . , Cm ∈Mm+1,m+1 such that Cn ∈ Cn ⊆ Tn, Cn 6∈ Tn−1. Therefore, the system
{C0, . . . , Cm} is linearly independent and the lower bound is proved.

To prove the upper bound, note that

dimSn ≤ min(dimSn−1 + dim Cn, dim Tn).

Since dim Cn ≤ m + 1− n and dim Tn =
n+1∑
k=1

k, one can show that

dimSm ≤
m∑

n=0

min(n + 1,m− n + 1) =
{

(m/2 + 1)2 , for even m,
((m + 1)/2 + 1) (m + 1)/2, for odd m.

Let us demonstrate two example that meet the bounds in inequality (4.8) exactly:
the 2D-SSA rank of the 2D array given by f(k, l) = (k + l)2 (m = 2) equal to 3, while
the 2D-SSA rank for f(k, l) = kl is equal to 4.

4.3.3. Sine-wave 2D-arrays. Consider a sum of sine-wave functions

hd(k, l) =
d∑

m=1

Am(k, l),(4.11)

Am(k, l) =

(
cos(2πω

(X)
m k)

sin(2πω
(X)
m k)

)T (
am bm

cm dm

) (
cos(2πω

(Y )
m l)

sin(2πω
(Y )
m l)

)
,(4.12)
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where 1 ≤ k ≤ Nx, 1 ≤ l ≤ Ny, at least one coefficient in each group {am, bm, cm, dm}
is non-zero and the frequencies meet the following conditions:

(ω(X)
n , ω

(Y )
n ) 6= (ω(X)

m , ω
(Y )
m ), for n 6= m, ω

(X)
m , ω

(Y )
m ∈ (0, 1/2).(4.13)

Proposition 4.7. For window sizes (Lx, Ly) such that Lx, Ly,Kx,Ky ≥ 4d the
2D-SSA rank of F =

(
hd(k, l)

)Nx−1,Ny−1

k,l=0
is equal to

rankLx,Ly
(F) =

d∑
m=1

νm, where νm = 2 or 4;

and numbers νm can be expressed as

νm = 2 rank
(

am bm cm dm

dm −cm −bm am

)
.(4.14)

Proof. Summands Am of (4.12) can be rewritten as a sum of complex exponents:

4Am(k, l) = (am − dm − i(cm + bm)) e 2πiω(X)
m ke 2πiω(Y )

m l +

+ (am − dm + i(cm + bm)) e−2πiω(X)
m ke−2πiω(Y )

m l +

+ (am + dm + i(cm − bm)) e−2πiω(X)
m ke 2πiω(Y )

m l +

+ (am + dm − i(cm − bm)) e 2πiω(X)
m ke−2πiω(Y )

m l.

Note that the coefficients of the first pair of complex exponents become zero at once if
am = dm and bm = −cm. The second pair of complex exponents vanishes if am = −dm

and bm = cm. Therefore, the number of non-zero coefficients of the complex exponents
corresponding to each summand Am(k, l) is equal to νm defined in (4.14). Then the
2D-array can be represented as a sum of products:

hd(k, l) =
r∑

n=1

xnyn
kzn

l, r =
d∑

m=1

νm,(4.15)

where all the coefficients xn ∈ C are non-zero, while yn and zn have the form yn =
e2πiω(X)

n , zn = e2πiω(Y )
n , and pairs (yn, zn) are distinct due to conditions (4.13), namely

(yn, zn) 6= (ym, zm) for n 6= m.
Due to [5], the rank of the Hankel-block-Hankel matrix W generated by the

2D-array (4.15) is equal to r at least for Lx, Ly ≥ 4d.
Note that the condition Lx, Ly ≥ 4d is just sufficient for the result of Proposi-

tion 4.7. The same result is valid for a larger range of Lx, Ly; this range depends on
the input 2D array, see [5] for the case of complex exponents.

Let us apply the proposition to two examples. Let f(k, l) = cos(2πω(X)k +
2πω(Y )l). Then the 2D-SSA rank equals 2. If f(k, l) = cos(2πω(X)k) cos(2πω(Y )l),
then the 2D-SSA rank equals 4.

5. Example of analysis. Consider a real-life digital image of Mars (275× 278)
obtained by web-camera2 (see Fig. 5.1). As one can see, the image is corrupted by a
kind of periodic noise, probably sinusoidal due to possible electromagnetic nature of
noise. Let us try to extract this noise by 2D-SSA. It is more suitable to use the 2D-
trajectory matrix notation. After choosing window sizes (25, 25) we obtain expansion
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Fig. 5.1. 2D-array: Mars

Ψ1 Ψ2 Ψ3 Ψ4 Ψ5 Ψ6 Ψ7 Ψ8 Ψ9 Ψ10

Ψ11 Ψ12 Ψ13 Ψ14 Ψ15 Ψ16 Ψ17 Ψ18 Ψ19 Ψ20

Fig. 5.2. Eigenarrays

(2.11). As we will show, these window sizes are enough for separation of periodic
noise.

Let us look at the eigenarrays (Fig. 5.2). The eigenarrays from the eigentriples
with indices N = {13, 14, 16, 17} have periodic structure similar to the noise. The
factor arrays have the same periodicity too. This observation entitles us to believe
that these eigentriples constitute the periodic noise. In addition, 4 is a likely rank for
sine-wave 2D-arrays.

Let us validate our conjecture examining the plot of weighted correlations matrix
(see Fig. 5.3). The plot depicts w-correlations rij (3.7) between elementary recon-
structed components (the left-top corner represents the entry r11). Values are plotted
in grayscale, white stands for 0 and black does for 1.

The plot contains two blocks uncorrelated to the rest. This means that the sum
of elementary reconstructed components corresponding to indices from N is separable
from the rest. Reconstruction of a 2D-array by the set N gives us the periodic noise,
while the residual produces a filtered image.

As the matter of fact, the noise is not pure periodic and is in a sense modulated.
This happens due to clipping of the signal values range to [0, 255].

2Source: Pierre Thierry
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Fig. 5.3. Weighted correlations for the leading 30 components

Fig. 5.4. Reconstructed noise and residual (filtered image)
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