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An Algebraic View on Finite Rank in 2D-SSA1
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Abstract3

The 2D-SSA method provides a decomposition of a 2D-array (a function4

of two variables, e.g. digital image) into a sum of identifiable components.5

For the decomposition to be proper, these components should be close to6

2D-arrays of finite rank. This paper is devoted to study of arrays of finite7

rank by means of polynomial ideals generated by arrays. The 2D-arrays are8

considered as functionals of polynomials. A general form of arrays of finite9

rank is obtained. The structure of finite-rank arrays and their trajectory10

spaces is investigated.11

1 Introduction12

The 2D-SSA method [5] is the two-dimensional extension of the well-known Sin-13

gular Spectrum Analysis [2]. 2D-SSA deals with a 2D-array F = F(Nx,Ny) =14

(fi,j)
Nx−1,Ny−1
i,j=0 and is aimed to decompose the 2D-array into a sum of compo-15

nents of different structure. The method has two parameters (Lx, Ly) called win-16

dow sizes, Lx ≥ 1, Ly ≥ 1, LxLy > 1 and Lx ≤ Nx, Ly ≤ Ny, LxLy < NxNy.17

2D-SSA considers Lx × Ly submatrices F(Lx,Ly)
k,l

def= (fi+k,j+l)
Lx−1,Ly−1
i=0,j=0 and stud-18

ies properties of the trajectory space19

L(Lx,Ly)(F) = span({F(Lx,Ly)
k,l }Nx−Lx,Ny−Ly

k,l=0 ).

The dimension of L(Lx,Ly)(F), referred to as 2D-SSA rank of F, plays an important20

role in the theory of the 2D-SSA method.21

In this paper, we consider an infinite complex-valued 2D-array F = (fi,j)+∞i,j=022

containing F as its submatrix. In the same manner, we introduce the trajectory23

space of the infinite array F (for Lx ≥ 1, Ly ≥ 1, LxLy > 1)24

L(Lx,Ly)(F) def= span({F(Lx,Ly)
k,l }+∞k,l=0),

which evidently contains L(Lx,Ly)(F) as a subspace. If there exist d, Lx0, Ly0 such25

that rank(Lx,Ly)(F) def= dimL(Lx,Ly)(F) = d for any Lx ≥ Lx0 and Ly ≥ Ly0, then26

F is said to be an array of finite 2D-SSA rank. We will show that arrays of this27

kind satisfy L(Lx,Ly)(F) = L(Lx,Ly)(F) if Nx and Ny are large enough.28
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It is convenient to study properties of the trajectory space with the help of29

L(F) def= span({Fk,l}+∞k,l=0),

where Fk,l is the infinite array with entries (Fk,l)i,j = (F)i+k,j+l, called the (k, l)-30

shift of F . The (k, l)-shifts, in their turn, can be studied by means of algebra31

of polynomials and polynomial ideals. It happens that this technique is quite32

appropriate for the 2D case, where the linear algebra approach appears to be33

insufficient, in contrast to the 1D case of time series of finite rank [2].34

An infinite array is said to be an array of finite rank if rankF def= dimL(F) <35

+∞. We will show that the 2D-array F is of finite rank iff (if and only if) it is of36

finite 2D-SSA rank. Note that an array of finite rank d has representation37

fi+k,j+l =
d∑

m=1

a
(m)
i,j b

(m)
k,l , (1)

where A(m) = (a(m)
i,j )Lx−1,Ly−1

i,j=0 , m ∈ {1, . . . , d}, form the basis of L(Lx,Ly)(F) and38

b
(m)
i,j are some coefficients. Therefore, as a matter of fact, we treat arrays of type39

(1) when studying arrays of finite (2D-SSA) rank.40

In Section 2 we introduce basic concepts of algebra of polynomials and polyno-41

mial ideals and establish a link between them and (k, l)-shifts of an infinite array.42

Then we study properties of infinite arrays of finite rank. Results of the section43

include a general form of arrays of finite rank. Section 3 contains properties of the44

trajectory space L(Lx,Ly)(F) of an infinite array. Results of Section 3 state the45

equivalence of notions of finite rank and finite 2D-SSA rank.46

2 Infinite arrays47

2.1 Functionals of polynomials. Linear recurrent relations48

Let V ∗ stand for the dual space (the space of all linear functionals ` : V → C,49

see [3]) of a vector space V over C. Let P = C[x, y] denote the vector space of all50

polynomials in two variables. An infinite array G = (gi,j)+∞i,j=0 defines `(G) ∈ P∗ as51

follows. For p(x, y) =
+∞∑

ρ,τ=0
a(ρ,τ)x

ρyτ ∈ P, where #{(ρ, τ) : a(ρ,τ) 6= 0} < +∞,52

`(G) (p) def=
+∞∑

ρ,τ=0

a(ρ,τ)gρ,τ . (2)

Let us denote `
(F)
k,l

def= `(Fk,l) and consider D(F) def= span({`(F)
k,l }+∞k,l=0) ∈ P∗. This53

space of functionals is isomorphic to L(F) (we write D(F) ∼= L(F)).54

Definition 1. Let V be a vector space over C. The zero set of a space of functions55

S ⊆ (V → C) is, by definition,56

Z[S] def= {z ∈ V : f(z) = 0 ∀f ∈ S} .
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Lemma 1. The polynomial
+∞∑

ρ,τ=0
a(ρ,τ)x

ρyτ belongs to Z[D(F)] iff57

+∞∑
ρ,τ=0

a(ρ,τ)fk+ρ,l+τ = 0 for any k, l ∈ N0, (3)

or, that is equivalent,
+∞∑

ρ,τ=0
a(ρ,τ) `

(F)
ρ,τ ≡ 0.58

In other words, Z[D(F)] consists of shift-invariant linear relations (3) between59

entries of F . They are analogues of linear recurrent formulae in the 1D case (see60

[2]). Let us review some important properties of zero sets.61

Definition 2. The annihilator of Q ⊂ P is defined by62

A[Q] def= {` ∈ P∗ : `(p) = 0 ∀p ∈ Q} .

Proposition 1 ([1, Lemma 1.1]). Z[A[Q]] = Q for any subspace Q of P.63

Remark 1. It is easy to see that D ⊆ A[Z[D]] for any D ⊂ P∗.64

Proposition 2 ([1, Cor. 1.7]). D = A[Z[D]] if the subspace D of P∗ is finite-65

dimensional.66

2.2 Ideals. Closed spaces of functionals67

Definition 3. A set of polynomials I ⊂ P is a polynomial ideal if p + sq ∈ I for68

any p, q ∈ I, s ∈ P.69

Definition 4. The quotient ring R[I] = P/I of an ideal I is, by definition, the70

space of equivalence classes modulo I:71

R[I] def= {[p]I : p ∈ P} , where [p]I
def= {q ∈ P : q − p ∈ I} ,

with multiplication and addition operations induced from P to R[I].72

Proposition 3. The annihilator of an ideal I ⊆ P is isomorphic to (R[I])∗.73

The proof is obvious since ` ∈ A[I] iff `(p1) = `(p2) for any p1 ∈ P, p2 ∈ [p1]I .74

Hence, we can think of ` as of a function R[I] → C. For more details see [3, §2.3].75

Definition 5. A vector space D ⊂ P∗ is called closed if76

∀q ∈ P ` ∈ D ⇒ (` · q) ∈ D, where (` · q)(p) def= `(qp).

Proposition 4 ([3, §2.3.2]). The annihilator of an ideal I ⊆ P is closed.77

Proposition 5 ([3, Th. 2.21]). For any closed space D ⊂ P∗ the zero set78

I[D] def= Z[D] is a polynomial ideal.79
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Let p(x, y) =
+∞∑

ρ,τ=0
a(ρ,τ)x

ρyτ ∈ P. Then80

(`(F)
k,l · xαyβ) (p) =

+∞∑
ρ,τ=0

a(ρ,τ)(Fk,l)ρ+α,τ+β = `
(F)
k+α,l+β (p) , (4)

which allows us to prove the following assertion.81

Proposition 6. A vector space D(F) is closed.82

Thus the set of linear relations (3) has the structure of an ideal and can be83

studied by polynomial methods. For brevity we denote I(F) def= I[D(F)].84

2.3 Zero-dimensional ideals and arrays of finite rank85

Polynomials can be treated as functions C2 → C, therefore we may define the zero86

set Z[I] ⊆ C2 of a polynomial ideal I (see Definition 1).87

Definition 6. A polynomial ideal I is called zero-dimensional if its zero set is88

discrete, i.e. Z[I] = {(λ1, µ1), . . . , (λn, µn)}.89

Theorem 1 ([4, Th. 3.1, 3.6]). I is zero-dimensional iff dimR[I] < +∞.90

Applying Remark 1, Proposition 2 and Proposition 3 we obtain the following.91

Corollary 1. For a closed subspace D, I[D] is zero-dimensional iff dimD < +∞.92

If dimD < +∞ then D = A[I[D]]. Therefore L(F) is isomorphic to the93

annihilator of I(F) for an array of finite rank.94

Definition 7. The differential functional ∂(α,β)[λ, µ] ∈ P∗ with (α, β) ∈ N2
0 and95

(λ, µ) ∈ C2 is defined by96

∂(α,β)[λ, µ](p) def=
1

α!β!

(
∂α+βp

∂xα∂yβ

)
(λ, µ).

Theorem 2 ([1, Th. 2.8]). Let Z[I] = {(λ1, µ1), . . . , (λn, µn)}. Then97

A[I] = D1 ⊕ . . .⊕Dn, (5)

where Dk is a finite-dimensional closed subspace of span({∂(α,β)[λk, µk]}(α,β)∈N2
0
).98

Theorem 2 and the relation fi,j = `(F)(xiyj) allow us to obtain the following99

general form of arrays of finite rank.100

Proposition 7. An infinite array F of finite rank has the form101

fi,j =
n∑

k=1

qk(i, j)λi
kµj

k,

where (λk, µk) ∈ Z[I(F)] and qk are polynomials.102

4



Applying Proposition 7 to real-valued arrays of finite rank gives103

fi,j =
h∑

k=1

pk(i, j)ρi
kτ j

k cos(ωki + αk) cos(θkj + βk),

where ρk, τk, ωk, θk, αk, βk ∈ R and pk are real polynomials.104

3 Properties of trajectory spaces105

3.1 Normal sets. Generators of ideal106

For a set B ⊂ N2
0, let B + (k, l) def= {(α, β) ∈ N2

0 : (α− k, β − l) ∈ B}.107

Definition 8. A set A ⊂ N2
0, A 6= ∅, is called a normal set of an ideal I, if108

(A+ (−1, 0)) ∪ (A+ (0,−1)) ⊂ A and
{[

xαyβ
]}

(α,β)∈A is a basis of R[I].109

For every ideal there exists a normal set (in most cases it is not unique). Let110

us consider a zero-dimensional ideal I and fix its normal set A.111

Lemma 2. For any (α, β) ∈ N2
0 \ A there exists unique polynomial112

p(α,β)(x, y) def= xαyβ −
∑

(ρ,τ)∈A
a(α,β),(ρ,τ)x

ρyτ ∈ I.

Definition 9. A generated by Q ⊂ P ideal is, by definition, the set of finite113

polynomial combinations 〈Q〉 def= {g1h1 + . . . + gmhm : gi ∈ Q, hi ∈ P}.114

Proposition 8 ([3, Prop. 2.30]). The ideal I is generated by
{
p(α,β)

}
(α,β)∈δ(A)

,115

where δ(A) def=
(
(A+ (1, 0)) ∪ (A+ (0, 1))

) \ A.116

3.2 From ideals and functionals to trajectory spaces117

Let A be a normal set of I(F). By Lemma 1 and Lemma 2 we obtain the following118

lemma.119

Lemma 3. The set {`(F)
k,l }(k,l)∈A is a basis of D(F).120

Lemma 3 implies that {Fk,l}(k,l)∈A is a basis of L(F). Let us fix some window121

sizes (Lx, Ly) ∈ N2 and deduce an analogous property for the trajectory space.122

Definition 10. The orthogonal complement of L(Lx,Ly)(F) is, by definition,123

(L(Lx,Ly))⊥
def= {(ak,l)

Lx−1,Ly−1
k,l=0 : ∀i, j ≥ 0

∑
k,l ak,lfi+k,j+l = 0}.

Immediately, we get124

(L(Lx,Ly))⊥ = {(ak,l)
Lx−1,Ly−1
k,l=0 :

∑
k,l ak,l`

(F)
k,l ≡ 0}, (6)

and the following proposition is evident.125

5



Proposition 9. dimL(Lx,Ly)(F) = dim span({`(F)
k,l }Lx−1,Ly−1

k,l=0 ).126

Due to Lemma 3 and Proposition 9, we come to the equivalence of notions of127

finite rank and finite 2D-SSA rank.128

Proposition 10. F is of rank d < +∞ iff there exist Lx0, Ly0 such that129

∀Lx ≥ Lx0, Ly ≥ Ly0 dimL(Lx,Ly)(F) = d. (7)

Having normal set A, one can take in (7) Lx0 = Bx(A) def= min{α : A +130

(−α, 0) = ∅} and Ly0 = By(A) def= min{β : A+ (0,−β) = ∅}.131

Proposition 11. For Lx > Bx(A), Ly > By(A) the ideal I(F) is generated by132

Q
(Lx,Ly)
⊥

def= {∑k,l ak,lx
kyl ∈ P : (ak,l)

Lx−1,Ly−1
k,l=0 ∈ (L(Lx,Ly))⊥}.

Proof. By (6) and Lemma 1, Q
(Lx,Ly)
⊥ ⊂ I. Obviously, {p(α,β)}(α,β)∈δ(A) ⊂133

Q
(Lx,Ly)
⊥ . Therefore, by Proposition 8, I = 〈Q(Lx,Ly)

⊥ 〉 . 2134

Proposition 12. For F , Lx, Ly such that dimL(Lx,Ly)(F) = rankF and a normal135

set A, the submatrices {F(Lx,Ly)
k,l }(k,l)∈A form a basis of L(Lx,Ly)(F).136

Proposition 12 means that a finite-size submatrix of an finite-rank infinite array137

inherits structure of this infinite array. Moreover, Proposition 11 implies that the138

entries of the infinite array are uniquely defined by its finite-size submatrix.139
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