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Abstract

Application of Singular Spectrum Analysis (SSA) for the purpose of ex-
tracting and forecasting time series cyclic components is considered. Auto-
matic methods of identification are applied within the framework of SSA.
Their suitability for the class of exponentially modulated harmonic compo-
nents is numerically investigated.

Introduction

Let us consider a time series FN = (f0, f1, . . . , fN−1) as a sum of additive com-
ponents (such as a trend, regular oscillations and a noise) and set the task of
extraction (approximation) of one of the components and its continuation. Since
the model of the signal (i.e., of the deterministic component of the time series)
doesn’t assumed to be known, the nonparametric method ‘Caterpillar’-SSA [2] is
therefore appropriate.

We start with brief description of the SSA algorithm for extraction of an addi-
tive component SN of the observed time series FN = SN + RN (RN is a residual)
with length N (the detailed description see in [2]). At the first stage of the algo-
rithm we choose a window length L, 1 < L < N , and construct a trajectory matrix
X with vectors Xj = (fj−1, . . . , fj+L−2)T ∈ IRL, j = 1, . . . , K = N − L + 1, as
columns. The next step is calculation of the matrix XXT , its eigenvalues {λj}L

j=1

numbered in decreasing order, d = max{j : λj > 0}, eigenvectors {Uj}d
j=1, and

factor vectors {Vj}d
j=1. The eigentriples (

√
λj , Uj , Vj), j = 1, . . . , d, form the

Singular Value Decomposition (SVD) X =
∑

j

√
λjUjV

T
j . At the second stage

we need to identify the group I of eigentriples that correspond to SN . Finally,
the algorithm produces the reconstructed component S̃N , calculated by diagonal
averaging (hankelisation) of the matrix XI =

∑
j∈I

√
λjUjV

T
j .

Once the group I is chosen we can construct a recurrent forecast of the recon-
structed component: the space spanned by {Uj}j∈I generates a linear recurrent
formula which can be used for forecasting S̃N (see details in [2]).

Thus extraction/forecast of the component SN is controlled by choice of window
length L and by identification of components which form the group I. Generally
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speaking, the group I corresponding to SN exists only if the conditions of (ap-
proximate) separability of SN from the residual RN are satisfied [2]. Hereinafter
we assume that the approximate separability takes place.

There is the software [4], which allows users to produce manual identification
of required eigentriples in interactive mode; choice of eigentriples is based on vi-
sual information and theoretical results. However workable methods of automatic
identification of eigentriples can considerably extend the range of problems solved
by SSA.

It is no wonder that automatic identification (AI) produces results worse than
that of interactive visual identification (VI). Moreover, AI methods are not fully
automatic (they are based on thresholds setting); therefore several questions ev-
idently arise. First of all, we have to be sure that there exists such optimal AI
thresholds (certainly their choice is based on the time series) that the accuracy of
component reconstruction/forecast by means of AI is comparable to the accuracy
of VI results. Secondly, it is necessary to develop an approach to setting the AI
threshold, which allows one to process every time series from a prescribed class
with appropriate quality. This demand being fulfilled enables one to apply AI to
real-life time series with unknown features.

In this paper we investigate the method of AI [1] used for extraction and
forecast of exponentially-modulated (e-m from here) harmonics. This method can
be applied to extraction of regular oscillations in a rather general case, when these
oscillations can be approximated by a sums of e-m harmonic components.

1 Identification of e-m harmonic eigentriples

Automatic identification of eigentriples produced by e-m harmonic SN with general
term sn = Aeαn cos(2πωn), 0 < ω < 0.5, is applied to eigenvectors {Uj}d

j=1.
Let us describe in brief the so-called Fourier method [1, 3]. We assume here-

inafter that Lω is integer (L is divisible by the cycle period 1/ω) and also that L is
large enough and α is small enough to give a possibility to use asymptotical results
under the assumption that L → ∞, α → 0, Lα → const > 0. The identification
method is based on the fact that an e-m harmonic generates two eigentriples with
eigenvectors similar to e-m harmonical sequence with the same frequency and ex-
ponential rate where phase shift is close to π/2. Furthermore the corresponding
eigenvalues are close. Here we apply the Fourier method to consequent pairs of
eigenvectors Uj , Uj+1.

Let us define the periodogram ΠL
U (ω) of a vector U ∈ IRL for ω ∈ {k/L}bL/2c

k=0

by the formula

ΠL
U (k/L) =

L

2





2c2
0, k = 0,

c2
k + s2

k, 1 6 k 6 (L− 1)/2,

2c2
L/2, if L is even and k = L/2,

where ck and sk are coefficients before cosine and sine with the frequency k/L in
the Fourier expansion of the sequence u1, . . . , uL. The value ΠL

U (ω) reflects the
contribution of a harmonic with frequency ω to the Fourier expansion of u1, . . . , uL.
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We define ρj,j+1 = 0.5max06k6L/2

(
ΠL

Uj
(k/L) + ΠL

Uj+1
(k/L)

)
.

We say that an eigenvectors pair (Uj , Uj+1) is identified as corresponding to
some e-m harmonic if periodograms of Uj and Uj+1 are peaked at the same fre-
quency and ρj,j+1 > ρ0 for the given threshold ρ0 ∈ [0, 1].

Consider the special case of exact separability of e-m harmonic component
from the residual and let the pair Uj , Uj+1 correspond to this component. Then,
choosing a pure harmonic (α = 0), would yield ρj,j+1 = 1. It can be shown under
the conditions assumed in Section 1 that the following relation takes place for
α > 0

ρj,j+1 u ρ̃(γ) =
2
γ

(eγ − 1)
(eγ + 1)

, (1)

where γ = αL. Note that any ρ0 / ρ̃(γ) leads to identification of the pair of
eigentriples corresponding to the e-m harmonic in conditions of exact separability.

2 Numerical results

Consider the time series FN = (f0, f1, . . . , fN−1) with general term

fn = sn + σeαnεn, sn = Aeαn cos(2πωn), (2)

where εn is the normal white noise with zero mean and unit variance. Accuracy of
separability of the signal SN from the noise depends on choice of window length L
and can be varied by values of σ and of time series length N . Note that the case
α = 0 corresponds to a pure harmonic. Quality of the identification procedure can
be estimated on the base of V simulations of the series (2). Estimates of average
error for extraction and Q-term forecast of SN are examined as characteristics of
identification quality.

The model (2) corresponds to multiplicative mode of errors. Therefore it is nat-
ural to consider exponentially weighted errors WMSE and WMSD instead of con-
ventional mean square errors (MSE) and square root of that (MSD). The weighted
variants use weights e−αn for n-th term of the time series. Surely, weighted errors
coincide with MSE and MSD for α = 0.

In the below numerical examples we’ll use values A = 3, V = 1000, Q = 13,
ω = 1/12 (i.e. period of a cycle is equal to 12).

2.1 AI with optimal thresholds

It is known that for the considered model (2) (if the noise is not too big) two
leading eigentriples correspond to the signal SN . That is why the interactive visual
identification VI is equivalent to reconstruction/forecast of SN with I = {1, 2}.

Denote by ρ
(opt)
0 (FN , L) the optimal threshold, which gives minimum average

WMSE for the time series FN defined by (2) and window length L = L(FN ).
The inequality

ρ
(opt)
0 (FN , L) 6 ρ̃(αL)
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is reasonable, since eigenvectors form can be distorted due to approximate sepa-
rability and therefore the AI criterion should be weaken in comparison with the
exact separability case. The worse separability of SN from the residual is, the
greater is the difference between ρ

(opt)
0 (FN , L) and ρ̃(αL).

Numerical experiments show that AI with ρ0 = ρ
(opt)
0 (FN , L) is quite similar

to VI, i. e. average errors of AI are very close to average errors of VI (error
distributions are close too) if αL isn’t too big. These results confirm that the
considered AI method is quite appropriate for extraction of e-m harmonics if we
can take the window length L divisible by the cycle period.

Let us introduce results of harmonics extraction for N = 47 and L = 24 (24 is
divisible by the period value 12) and take time series (2) with α = 0, 0.01, 0.02 and
σ = 0, 1, 2. Tables 1 and 2 contain optimal thresholds for extraction and forecast
of the e-m harmonic component and the corresponding errors.

Table 1: Optimal thresholds for extraction (left) and forecast (right): N = 47, L = 24

α 0 0.01 0.02

σ = 0 1.00 0.99 0.98
σ = 1 0.97 0.95 0.91
σ = 2 0.91 0.90 0.87

α 0 0.01 0.02

σ = 0 1.00 0.99 0.98
σ = 1 0.97 0.95 0.91
σ = 2 0.93 0.92 0.89

Table 2: Minimal WMSD for extraction (left) and forecast (right): N = 47, L = 24

α 0 0.01 0.02

σ = 0 0 0 0
σ = 1 0.34 0.34 0.36
σ = 2 0.76 0.78 0.84

α 0 0.01 0.02

σ = 0 0 0 0
σ = 1 0.52 0.53 0.54
σ = 2 1.10 1.11 1.15

These tables give us the following observations: optimal thresholds for recon-
struction and forecast (almost) coincide; forecast errors are clearly greater than
reconstruction errors; weighted errors depend on α slightly.

Optimal values of thresholds produce almost proper quantity of identified eigen-
vectors with proper numbers. Evidently, thresholds less than optimal ones can lead
to the choice of redundant eigenvectors. Thresholds with greater than optimal
values can cause a loss of the desired eigenvectors. The last is more crucial. The
described effect is confirmed by dependence of WMSD error on threshold value
(see Fig. 1 with α = 0.01 and σ = 1).

Thus, we can slightly decrease the threshold ρ0 (and weaken the AI criterion)
with inconsiderable loss of criterion quality, if necessary for whatever reason. How-
ever we cannot increase ρ0, therefore the following inequality should be fulfilled

ρ0 6 ρ
(opt)
0 (FN , L). (3)
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Figure 1: Dependence of WMSD on ρ0

2.2 Choice of AI thresholds for a set of time series

The previous section shows that simulation allows us to find AI thresholds giving
a good quality of identification if we know model of time series in detail. Unfortu-
nately, this way of threshold choice cannot be realized if we process real-life time
series and probably know only general features of the set of analyzed time series.
Let us study this problem using extraction of e-m harmonic as an example.

Consider a set K of time series consisting of e-m harmonic SN as an additive
component. Our aim is to choose the threshold ρ0, which gives an appropriate
quality of extraction of SN for any time series FN ∈ K. Let us fix such way of
choice of window length L = L(N) that SN is approximately separated from the
residual. Due to (3) we obtain that the choice

ρ0 = ρ
(opt)
0 (K, L) def= min

FN∈K
ρ
(opt)
0 (FN , L) (4)

gives identification of the desired eigenvector pair for any FN ∈ K. Certainly, the
smaller is the threshold value, the weaker is the AI criterion; the last leads to
possible choice of wrong (redundant) eigentriples pairs. Therefore, application of
AI for processing time series from the set K with fixed rule for choice of L = L(N)
can induce appropriate results, as long as ρ

(opt)
0 (K, L) doesn’t differ from 1 too

much.
As an example of the set K let us take time series (2) with N > N0, σ 6 σ0,

αL 6 γ0. Let L ≈ N/2 and Lω be an integer (this choice gives the best quality of
separability). Then the condition αL 6 γ0 transforms to αN/2 / γ0. This means
that the amplitude of SN cannot increase bigger than e2γ0 times. We expect
ρ
(opt)
0 (K, L) = ρ

(opt)
0 (F ∗N0

, L0(N0)), where F ∗N0
is a time series with length N0 and

σ = σ0 (the case of worst separability) and α = α0 = γ0/L0 (the case of minimal
ρ̃(αL)).

For N0 = 47 (L0 = 24), σ0 = 2, γ0 = 0.48 we have ρ
(opt)
0 (K, L) = 0.87 (see

Table 1, σ = 2, α = 0.02). Table 3 (left) contains errors WMSD obtained with
ρ0 = 0.87 (compare with Table 2 (left)).

If we take N = 95 and L = 48, then ρ0 = 0.87 should guarantee good results
for α 6 0.01. Table 3 (right) confirms it. Also, this table shows that the threshold
0.87 taken for the worst case gives appropriate results for α = 0.02 and σ = 1. As
for α = 0.03, AI with threshold equal to 0.87 is failed.

If we consider forecast errors, then these conclusions would remain as before
(see Table 4).
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Table 3: WMSD for extraction: ρ0 = 0.87; N = 47, L = 24 (left) and N = 95, L = 48
(right)

α 0 0.01 0.02

σ = 1 0.38 0.38 0.38
σ = 2 0.79 0.80 0.84

α 0 0.01 0.02 0.03

σ = 1 0.27 0.27 0.28 1.81
σ = 2 0.55 0.55 0.84 1.92

Table 4: WMSD for forecast: ρ0 = 0.87; N = 47, L = 24 (left) and N = 95, L = 48
(right)

α 0 0.01 0.02

σ = 1 0.54 0.54 0.55
σ = 2 1.15 1.15 1.16

α 0 0.01 0.02 0.03

σ = 1 0.34 0.34 0.37 1.78
σ = 2 0.72 0.73 0.94 1.88

Thus the considered method of automatic identification shows its applicability
for extraction and forecast of exponentially-modulated harmonics in some restric-
tions on the analyzed set of time series.
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