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We present investigation of gene expression profiles by means of Singular Spectrum Analysis (SSA). The biolog-
ical problem under investigation is the decomposition of Bicoid protein profiles of Drosophila melanogaster into
the sum of a signal and noise, where the former consists of an exponential-in-distance pattern and close to con-
stant nonspecific component, or “background”. The signal processing problems addressed are: (i) trend extraction
from a noisy signal, (ii) batch processing of similar data, and (iii) analytical approximation of the signal compo-
nents by the sum of exponential and constant-like functions. The proposed methods are evaluated on the given 17 se-
ries.
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1 INTRODUCTION

Singular Spectrum Analysis is a method intended to per-
form decomposition of a sequence of measurements (usu-
ally a time series) into a sum of interpretable components,
such as a trend, cycles and noise [2]. SSA is recognized in
geosciences, and is giving promising results in other ar-
eas, see the collection of references on the website SSAwiki:
http://www.math.uni-bremen.de/∼theodore/ssawiki/. This
work presents the use of SSA for signal extraction from spa-
tial one-dimensional gene expression data. SSA was chosen
as a compromise between parametric methods like regres-
sion, which can lead to wrong results if the model is not
valid, and frequency methods like filtering.

The study of the activity of diverse genes has become
one of key approaches inmodern functional genomics and is
crucial for our understanding of embryo development. The
expression of genes is traced either in time, or in space (as
in our case), along different tissues and organs, or even a
whole embryo. The research of gene expression is aimed at
biomedical problems, but first it is systematically tested
and developed on so-called model organisms. Drosophila

melanogaster (fruit fly) is one such organism and the gene
ensemble governing early events of fly embryo segmenta-

tion is one of the best studied genetic networks.This net-
work of cross-regulating genes makes complicated patterns
of their products, the segmentation factors. These pat-
terns are directing the embryo developmental processes.
Exponential-in-distance patterns are common at the very
beginning of segmentation and the primary morphogenetic
gradient of the protein Bicoid is the most known and best
studied [3, 4].

The biological problem under investigation is extrac-
tion of a signal from the noisy Bicoid protein profile. Fol-
lowing [3], we assume Bicoid to generate exponential pat-
tern.Themeasuredproteinprofile containsalso the smooth
residual referred to as “background” [5] and the measure-
ment noise. In general, the formof the background is still an
open question [3, 4, 5]; moreover, it includes an unknown
additive function depending on the confocal microscopy
settings used. In this paper, we extend the model of [3] al-
lowing the background to differ from constant. The prob-
lem is complicated by the fact that (i) the data contain out-
liers and (ii) the data are very noisy and the noise has un-
known structure; although the noise appears to be multi-
plicative, the carried out study showed that it is true in very
rough approximation only.
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The SSA features demonstrated are: (i) signal extrac-
tion with no parametric models of signal/noise specified;
(ii) robustness to outliers; (iii) taking into account a para-
metric model of signal, if specified; (iv) interactive analysis
with control over quality of separation of signal and noise;
(v) batch processing of a set of similar series; (vi) deriva-
tion of an analytical formula of the signal.

Section 2 introduces the data, SSA and the related
methods used. The results of data processing are presented
in Section 3. Finally, the conclusions are provided.

2 METHODS AND APPROACHES

Biological Data. Expression level of protein in wild-type
fruit fly embryos (Drosophilamelanogaster, Oregon-R)
was measured using fluorescently-tagged antibod-
ies. For each embryo a 1024×1024 pixel image with 8
bits of fluorescence data was obtained. Image process-
ing transforms each image into an ASCII table containing
a series of records (fluorescence intensity), one for each nu-
cleus. About 1100-1300 nuclei are obtained from each
image. Each nucleus is characterized by a unique identifi-
cation number, the anteroposterior (AP) and dorsoventral
(DV) coordinates of its centroid, and the average fluores-
cence level of the gene product. Because the expression
of segmentation genes is largely a function of posi-
tion along the AP axis, it is natural to use the AP profiles
of gene expression. We use straightened data from a rect-
angle 50% of the DV height of the embryo, centred on
the AP axis, for details see [3]. This captures approxi-
mately 700-800 nuclei. As in [3], we investigate only the in-
terval of the AP coordinate between 20 and 80 percent
egg length (%EL). For examples of plotting nuclear inten-
sity vs. AP position, see Figure 1a,c. The considered test
set consists of 17 embryo images belonging to cleavage cy-
cle 13 and thoroughly studied in [3]. The data and software
used in this study are available at http://www.math.uni-

bremen.de/∼theodore/GENESSA. For a description of the
embryos, see [6], http://flyex.ams.sunysb.edu/FlyEx/, or
http://urchin.sbpcas.ru/FlyEx/.

SSA. Let us describe the basic algorithm of SSA for
extraction of signal from a one-dimensional series F =
(f0, . . . , fN−1). For the given data, fn represents the inten-
sity measured at the n’th nucleus inside the considered in-
terval of 20%EL–80%EL. The first step of SSA has only the
parameter L, the window length, 1 < L < N , and consists of
the construction of the Hankel matrix of size L × K, K =
N −L+1, with column vectors Xj = (fj−1, . . . , fj+L−2)

T,
j = 1, . . . , K, which is called the trajectorymatrix. Note
that there is a one-to-one relation between series of length
N and Hankel matrices of size L × K: each secondary di-
agonal of a Hankel matrix has equal values and produces
a term of the series. The trajectory matrix is then de-
composed into the sum of the ordered elementary matri-
ces, X =

∑d
i=1 Xi, where Xi =

√
λiUiV

T
i , λi are nonzero

eigenvalues of XXT in decreasing order, Ui are the corre-
sponding eigenvectors, and Vi are the factor vectors. This is
the so-called SingularValueDecomposition (SVD) and each

SVDcomponent generates an elementaryreconstructedcom-

ponent (elementaryRC) of the series F as follows. The ma-
trix Xi is hankelized by averaging the entries with indices
i + j = const, and the corresponding series of length N

is reconstructed by the above-mentioned one-to-one rela-
tion.ThuswedecomposeF into the sumof elementaryRCs,
F = F̃1+. . .+F̃d,whered is thenumberofnonzeroeigenval-
uesλi (the so-calledSSArank ofF ).Thenwe choose a group
J of r indices of thedesirable components ofF (signal in our
case) and gather the reconstructed signal as F̃ =

∑
i∈J F̃i.

The signal extraction problem is thus reduced to
(i) choice of window length L and (ii) selection of the sub-
group J of SVD components for reconstruction. These
questions are briefly discussed in the next paragraph.

Trend extraction in SSA. SSA needs no a priori specifi-
cation of models of series and signals, neither deterministic
nor stochastic ones. In this paper, we are interested in ex-
traction of a slowly-varying signal, usually called the trend.
Hereinafter, we refer to trend instead of signal.

Generally, SSA is able to extract different kinds of
trends. Note that any trend can be approximated by a
finite-rank series as the class of finite-rank series includes
all kinds of sums of products of polynomials, exponentials
and sinusoids. Let us assume that the trend is (or is approx-
imated by) a series of rank r. With large enough N and L

(L ≤ N/2), the trend is separable from noise and is recon-
structed by the r leading SVD components. The subspace
spanned by the r corresponding eigenvectors contains in-
formation about the finite-rank structure and, in partic-
ular, allows to derive the approximate analytical formula
of the trend. If N is not large enough (for strong noise or
high rank r) and separability is bad, then the trend still
can be extracted using small L. In this case trend is de-
termined by a few leading components and SSA works like
a smoothing adaptive linear filter. However, the subspace
spanned by the corresponding eigenvectors does not reflect
the finite-rank structure of the trend and is liable to be af-
fected by noise and outliers.

Grouping of SVD components is based on the fact that
the slowly-varying component of the series generates eigen-
vectors and factor vectors of slowly-varying form [1, 2] and
therefore is composed of similar elementary RCs. Thus, the
identification of the components of a trend consists in iden-
tification (visual or automatic) of slowly-varying eigenvec-
tors, factor vectors or elementary RCs.

AutoSSA for trend extraction. In this paragraph, we
present a method of identification of slowly-varying eigen-
vectors. This method is easy to use as it has only two pa-
rameters (if the window length is fixed).

Firstly, we introduce the periodogram IY (ω)
of a vector Y ∈ RM , Y = (y0, . . . , yM−1)

T:

IY (k/M) = 1
M

∣∣∑M−1
n=0 e−i2πnk/Myn

∣∣2, k = 0, . . . , bM/2c,
which can be interpreted as the contribution of the fre-
quency k/M . The cumulative contribution is evalu-
ated as πY (ω) =

∑
k:0≤k/M≤ω IY (k/M), ω ∈ [0, 0.5]. For

ω0 ∈ (0, 0.5) the contribution of low frequencies to Y ∈ RM

is defined as C(Y, ω0) = πY (ω0)/πY (0.5).
Let us consider eigenvectors Ui. Then, given ω0 ∈
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(0, 0.5) and C0 ∈ [0, 1], we select SVD components with
eigenvectors satisfying: C(Ui, ω0) ≥ C0. One may interpret
this method as selection of SVD components characterized
mostly by low-frequency fluctuations.

The low-frequency boundary ω0 manages the scale of
the extracted trend: the lower ω0, the slower the trend
varies. The parameter C0 regulates an acceptable share of
higher frequencies in the extracted component and is usu-
ally chosen close to 1. For more details on selecting ω0 and
for description of a fitting procedure to choose C0 see [1].

Derivation of the analytical form of a component.

A series consisting of a sum of exponentials and sinusoids
has SSA-rank r and is represented in the complex-valued
form as gn =

∑r
j=1 Cjµ

n
j . The subspace spanned by the

r leading eigenvectors of the trajectory matrix determines
thevaluesµj .Themethods calculatingµj through this sub-
space are called the subspacemethods. Real-valued µj corre-
spond to exponential components; complex conjugate µj

generate sinusoids. For a noisy signal, the subspace of the
signal can be estimated using SSA as the space spanned by
the eigenvectors {Ui}i∈J . Subspace methods for calcula-
tion of exponentials µj (mostly complex-valued) have been
known for a long time.Among their advantages are: (i) high
resolution (estimation of close frequencies of summand si-
nusoids), (ii) robustness to outliers, (iii) little prior infor-
mation (no signal model specified, only its rank r).

In this paper we use the method ESPRIT [7], which was
chosen to illustrate application of subspace methods. Note
that there aremodifications of ESPRIT formore precise re-
sults, e.g. weighted/total least square ESPRIT. Having µj

estimated, the coefficients Ci can be computed by means of
one of the least squares methods. In terms of SSA, ESPRIT
exploits the rotational invariance property of the subspace
of the signal found by SSA.

3 RESULTS AND DISCUSSION

3.1 Methodology

An ideal case (trend is separable from noise with

L = N/2). Let us consider the data ms19 (data from a sin-
gle embryo) as an example, see Figure 1a. The only pa-
rameter of SSA is the window length L. SSA theory [2] im-
plies that for better separability between components of
a given series one should choose L close to the half-length
N/2.Having performedSVDwith L = 246 ≈ N/2,we visu-
ally examine the elementary RCs produced, see Figure 1b.
As only the two leading elementary RCs vary slowly, we re-
construct the trend with the two leading SVD components.
The resulting trend is depicted in Figure 1a. One can eas-
ily see that the result reasonably reconstructs the trend,
but at the same time is robust to the apparent outliers.

A bad case (trend is not separable from noise with

L = N/2). However, for some cases the trend can not be
separated from noise or cyclic components. For the data
ac2 (see Figure 1c) with L = 285 = N/2, the third and
fourth elementary RCs contain both trend and noise, see
Figure 1d. The contribution of these SVD components is

a b

c d

Figure 1: a, b ms19, c, d ac2 ; a, c original data with SSA
trend and b, d elementary RCs produced with L = N/2

small and they can be omitted for a tentative trend recon-
struction. But for background estimation, loss of even 1–2
intensity units is sizeable. Let us consider two additional
tricks which help to reconstruct trend more precisely.

Use of small window length. The trend and noise com-
ponents canbemixedbetweeneachotherdue to thecompli-
cated trend shape or strong noise, and the latter is observed
in our study. The first strategy to cope with the mixing is
to choose small window length L. With small L SSA works
like a smoothing adaptive linear filter. With L = 35 for ac2,
we get only the one leading SVD component corresponding
to the trend. Due to small window length, this SVD com-
ponent includes all terms of the trend. This method is suit-
able for different kinds of signals and overcomes the mix-
ing of trend and noise. However, the resultant decomposi-
tion does not allowus to split the trend into the pattern and
background.

Improvement of separability by the addition of a

constant. Recall that we suppose the trend to be the sum
of an exponential pattern and an almost constant back-
ground, where the latter is approximated by an exponen-
tial function with small rate. In this particular case an-
other trend extraction strategy can be exploited. Such a
trend generates two SVD components [2]. In order to en-
large the contribution of the second SVD component and
therefore to reduce mixture with the rest, we add a con-
stant to the givendata, thus artificially increasing theback-
ground. After that we use the theoretically best window
length L = N/2 with no effect of mixing. This strategy
greatly helps; having added A = 50 to the given data, the
results for ac2 (with L = 285) become visually the same as
in the good case ms19 depicted in Figure 1b. The value A

equal to 50 was chosen to provide separability for all series
from the considered test set and therefore to allow us to ex-
tract trends being splitted into patterns and backgrounds.
As for ms19, smaller values of A that enough for separabil-
ity can be used.
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3.2 Batch identification of trend components

Above we investigated the properties of the SSA represen-
tation ofBicoid gene expression data, which contain the ex-
ponential pattern and a close to constant background. Let
us apply AutoSSA for batch-processing the whole dataset
taking into account the experience of the previous section.
First, we set the parameter ω0. As mentioned above, ω0

defines the low-frequency interval [0, ω0]. Examining the
eigenvector periodogram,we canguessω0 as avaluebound-
ing the interval of large periodogram values next to the
zero frequency. Taking the data ms19 as an example, we
consider periodograms of its eigenvectors (L = N/2). Ex-
actly the two leading SVD components of ms19 are to
be identified. The first six frequencies 0, 1/L, . . . , 5/L of
the periodograms of both eigenvectors contain the prevail-
ing contribution. Thus, we select ω0 = 5/L. For five ran-
domly selected test series (ad36,as27, cb23,hx8,iz13 ), the
procedure of choice of C0 presented in [1] (Cmin = 0.5,
Cmax = 1, ∆C = 0.01, ∆R = 0.01) produces the following
C0: 0.85,0.87,0.88,0.85,0.88 of which the smallest C0 = 0.85
is selected. AutoSSA with ω0 = 5/L, C0 = 0.85 identi-
fies the same SVD components as those visually identified
above: two leading SVD components for ms19 (L = N/2)
and for ac2 increased by A = 50 (L = N/2), as well as only
the leading component for ac2 with L = 35.

Having added A = 50 to all series from the given set,
AutoSSA identifies exactly the two leading components.
The visual check of the identified eigenvectors proves their
slowly-varying shape; this substantiates the use of Au-
toSSA, especially for those data where addition of a con-
stant has enhanced the separability. Moreover, this unifor-
mity of results over thewhole dataset allowsus toderive the
analytical approximation using these SVD components.

3.3 Analytical trend approximation: exponential pat-
tern plus background

Let us consider two-rank approximation of the trend. A
two-rank series is either an exponentially-modulated sinu-
soid or a sum of two real exponentials [2], and a constant
function is a special case of an exponential. Note that we
specifynoapproximationmodel (fromthe twogivenabove)
but only the rank. For the data ac2 the resulting formula
for the trend is gn = 79.29 · 0.994n +(59.88 · 0.9998n− 50),
where n runs through the nucleus numbers in the consid-
ered AP interval. After transformation from nucleus num-
ber n to AP coordinate x, we obtain the approximation
for the exponential pattern p(x) and the background b(x):
p(x) = 302.35e−0.062x, b(x) = 11.7− 0.0865x, see Figure 2.

3.4 Summary results of the analytical approximation

The considered dataset contains 17 series and we extracted
exponential patterns using ESPRIT for all of them in-
creased by A = 50 in advance. That the patterns tend to
zero close to the posterior end is confirmed by the biolog-
ical interpretation of the Bicoid gradient. To generate ref-
erence results, we fitted the curve gn = CeLn + B to each
original series using the least squares (LS) method, like [3].

The patterns produced with ESPRIT and with LS-fitting
are very similar that confirms potential of ESPRIT in ex-
tracting exponential patterns without fixing the model of
constant background.Both theMatlab function fminsearch

(v.7.4) and the NonlinearEstimation module of STATIS-
TICA (v.6.0) with randomly chosen initial values produce
substantially incorrect results. Thus, the initial values used
are crucial. It turns out that using ESPRIT estimates of C,
L and B = 1 as the initial values, the procedure of the LS-
estimation becomes stable and precise. This shows the use-
fulness of ESPRIT in combination with LS-methods.

The SSA-based procedure presented here is more flex-
ible than the usual Bicoid profile modeling with constant
background. On the other hand, as simultaneous estima-
tion of parameters of two exponents is less stable in gen-
eral, the variation of the resulting pattern parameters can
be potentially larger than that in the model with a con-
stant background. However, even for modeling with fixed
shape of the background, SSA can be useful for setting ini-
tial values of the corresponding fitting procedure.

a b

Figure 2: ac2 : a initial series and its ESPRIT-
approximation of trend; b trend components: exponential
pattern and background

4 CONCLUSIONS

First, we developed the SSA-based technique for signal
extraction from one-dimensional spatial gene expression
profiles containing exponential-in-distance patterns and
constant-like backgrounds. The obtained results are con-
sistent with the state-of-the-art results for the given data,
though the data contain strong noise, outliers and we do
not assume models of profile, pattern, and background to
be known a priori. Moreover, the feasibility of batch pro-
cessing of the given data using AutoSSA is demonstrated.

Second, using the SSA-relatedmethodESPRIT,we ob-
tained an analytical representation of the signal as a sum of
two exponential functions. The first is the well-known ex-
ponential pattern of the Bicoid protein, and the second is
the background approximated by an exponential or linear
function in our case. The employed method produces sta-
ble parameter estimates, even for noisy series. Moreover,
these estimates can be used as initial values for nonlinear
least square fitting procedures in which the model is as-
sumed a priori.
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