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First-order SSA-errors for long time series:1

model examples of simple noisy signals1
2

Nina Golyandina2, Ekaterina Vlassieva3
3

Abstract4

In this paper we consider the problem of reconstruction of a noisy signal5

by means of Singular Spectrum Analysis and its extension to systems of sev-6

eral time series. We use the formal expansion of the reconstruction error and7

investigate the first-order (linear by perturbation value) term in the case of8

the time-series length tending to infinity. An explicit form of the asymptotic9

variance of the first-order error is derived for simple model examples with10

constant signals. Simulations confirm that the obtained conclusions are still11

valid for a wider class of signals including sine-waves.12

1 Introduction13

Let us consider the problem of reconstruction of a noisy signal by means of SSA14

(Singular Spectrum Analysis) [2, 3]. Let F = S + δE be a noisy signal of length15

N . Here E is a random noise, δ is a technical parameter and is used only for-16

mally, e.g., it can be equal to 1. The aim of this paper is to obtain the variance17

of reconstruction errors as a function of numbers of the time-series points, asymp-18

totically by signal length. In the paper, we consider the linear in δ first term19

errors S(1) = (s(1)
0 , ..., s

(1)
N−1) and demonstrate results on asymptotic variance Ds

(1)
l20

considering simple model examples with constant and sine-wave signals.21

Section 2 includes a short description of the SSA algorithm and the basic22

formulas for perturbations.23

Section 3 contains an explicit asymptotic (N → ∞) form of Ds
(1)
l for the24

constant signal. This form allows us to investigate dependence of reconstruction25

errors on noise variance σ2, window length L, which is the main parameter of SSA,26

and time-series length N .27

Similar considerations take place for Multi-channel SSA (MSSA), an extension28

of SSA to analysis of a system of time series (see [2, 4] for the MSSA algorithm29

and theory). Results analogous to that in the one-dimensional case are considered30

in Section 4 for a system of two noisy signals .31

The simulation results confirm that the obtained conclusions are also valid32

for application of SSA and MSSA to sine-wave signals. These conclusions are33

formulated in Section 5.34
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2 Algorithm of SSA and first-order errors35

We start with a short description of the SSA algorithm. In the case of signal36

extraction, the SSA method can be written as a sequence of mappings applied to37

the initial time series F = (f0, ..., fN−1) of length N . Introduce these mappings.38

Fix the so called window length L, 1 < L < N , and denote K = N − L + 1. Let39

ML,K be the space of matrices L × K, M(H)
L,K ⊂ ML,K be the space of Hankel40

matrices, and M(d)
L,K ⊂ML,K be the space of matrices of rank d (all of them are41

with Frobenious inner product).42

Let T : RN → M(H)
L,K be the embedding operator: F = T F has (i, j)-entries43

fi+j−2, i = 1, . . . , L, j = 1, . . . , K. Note that T is a one-to-one correspondence and44

T −1 exists. For a fixed d, let U1, ..., Ud be left singular vectors of F corresponding45

to its d largest singular values, LF,d = span{U1, ..., Ud} ⊂ RL and PF be the matrix46

of the orthogonal projector from RL to the space LF,d. Denote H the orthogonal47

projector from ML,K to M(H)
L,K (hankelisation operator).48

Suppose that d = rank T S < min(L,K), that is, we choose d equal to the SSA-49

rank of the signal S. Then we have the following sequence of objects: the initial50

time series F, its trajectory matrix F = T F, the reconstructed matrix S̃ = PFF,51

and the reconstructed signal S̃ = T −1H S̃.52

Thus, the signal reconstructed by SSA is defined as53

S̃ = T −1HPFT F.

Denote the trajectory matrices E = T E, S = T S. Note that S ∈ M(d)
L,K and54

PSS = S ∈M(H)
L,K . The reconstruction can be represented in the form S̃ = S+S(δ),55

where the reconstruction error is56

S(δ) = T −1H(
(PS+δE − PS)S + δPS+δEE

)
.

Conditions for convergence in norm of PS+δE−PS to 0 as N →∞ are formulated57

in [5]. The models of noisy signals considered in this paper satisfy these condi-58

tions. Since the results of [5] do not guarantee the convergence of S(δ) to 0, the59

convergence was checked by computer simulations.60

Considering a formal expansion of PS+δE in δ, PS+δE−PS = δP (1)+δ2P (2)+. . .,61

we obtain a formal expansion S̃ − S = δS(1) + δ2S(2) + . . . and therefore, S(δ) =62

δS(1) + δ2S(2) + . . .. Taking into consideration the simulations for noisy signals, we63

confirm that δS(1) is the main term of the reconstruction error for a wide range64

of values of δ, as N tends to infinity. That is why we call the linear in δ term of65

S(δ) the first-order reconstruction error. It is easy to see that S(1) = P (1)S+PSE,66

where the first summand appears due to errors in the projector operator while the67

second term is caused by the perturbations of the signal by noise.68

The perturbation technique [1] gives the possibility to obtain the expansion of69

PS+δE. In particular, we can calculate S(1) = T −1HS(1), where for d = 170

S(1) = U1U
T
1 E + EV1V

T
1 − α11U1V

T
1 (1)
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and for d = 271

S(1) = (U1U
T
1 + U2U

T
2 )E + E(V1V

T
1 + V2V

T
2 )−

− (
α11U1V

T
1 + α12U1V

T
2 + α21U2V

T
1 + α22U2V

T
2

)
.

(2)

Here Ui and Vi are left and right singular vectors of S, αij = UT
i EVj . These72

formulas help us to calculate first-order reconstruction errors for constant (rank73

equals 1) and sine-wave (rank equals 2) signals.74

3 First-order SSA-errors for a constant signal75

Consider fn = sn + εn, where sn ≡ c and εn, n = 0, . . . , N − 1, is Gaussian white76

noise with Dεn = σ2 (formally, we take δ = 1). Let σ2 be not too big to provide77

separability of the signal from noise. Relation (1) implies that the first-order78

reconstruction error does not depend on c. Therefore, we set c = 1.79

Asymptotic formulas Let the window length L ∼ αN , 0 ≤ α ≤ 1/2, and the80

number of the considered series point l ∼ λN/2, 0 ≤ λ ≤ 1, as N →∞. The point81

with proportion λ = 1 lies at the middle of the time series, that is, we start with82

consideration of errors for the first half of the time series and of window lengths83

less than half of the time-series length.84

By direct calculations, we obtain the following asymptotic form of variance of85

the first-order error as N →∞:86

Ds
(1)
l ∼ F (α, λ,N) =

σ2

N
ψ(α, λ) =

σ2

N





D1(α, λ), 0 ≤ λ ≤ 2(1− 2α),
D2(α, λ), 2(1− 2α) < λ < 2α,

D3(α, λ), 2α ≤ λ ≤ 1,

(3)

where87

D1(α, λ) =
1

12α2(1− α)2
(
λ2 (1 + α)− 2λα (1 + α)2 + 4α

(
3− 3α + 2α2

))
,

D2(α, λ) =
1

6α2 (1− α)2 λ2

(
λ4 + 2λ3

(−2 + 3α− 3α2
)

+

+ 2λ2
(
3− 9α + 12α2 − 4α3

)
+ 4λ

(−1 + 4α− 3α2 − 4α3 + 4α4
)

+

+ 8 α− 56 α2 + 144 α3 − 160 α4 + 64 α5
)
,

D3(α, λ) =
2
3α

.

The change points in the conditions of (3) correspond to l = K − L (i.e., with88

proportion 2(1− 2α)) and l = L (2α). The former change point exists if K < 2L89

(α > 1/3). Note that these formulas can be extended to window lengths 2 < L <90

N −1 (0 ≤ α ≤ 1) and to numbers of time-series points 0 ≤ l ≤ N − 1 (0 ≤ λ ≤ 2)91

by the symmetry of error with respect to the middle of the time series and by the92

equality of results for change L ↔ K (α ↔ 1− α).93
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The case of the known projector Suppose that the projector PS can be found94

exactly. Then P (1) = 0 and S(1) = PSE. The following formula for the asymptotic95

first-order reconstruction error takes place:96

Ds
(1)
l ∼ F0(α, λ, N) =

σ2

3N(1− α)2

{
(3− 3α− λ/2), 0 ≤ λ ≤ 2α,

(3− 4α), 2α ≤ λ ≤ 1.
(4)

It is interesting that the full first-order error F (α, λ, N) generally increases as97

window length (α) decreases, while F0(α, λ, N) decreases together with α. The98

equality F (0.5, 1, N) = F0(0.5, 1, N) holds for the middle point and L ∼ N/2 .99

Note that for α = 0 we get the value F (0, λ, N) = σ2/N , which is equal to the100

least square error if we estimate the constant in the parametric model.101

Optimal window length Theory of SSA [3] recommends the choice L = N/2102

to decrease the whole error of reconstruction. The obtained formula (3) allows us103

to find the window length providing minimal reconstruction errors for the given104

time-series points. That is, we are interested in αopt(λ) = arg min
α∈[0,1]

ψ(α, λ). The105

graph of αopt is depicted in Fig. 1. Fig. 2 contains the rate of improving the error106

with respect to the choice L ∼ N/2:107

q(λ) =
(

ψ(0.5, λ)
ψ(αopt, λ)

− 1
)

100%.

0 0.2 0.4 0.6 0.8 1

0.35

0.4

0.45

0.5

λ

α op
t

Figure 1: Optimal windows, αopt(λ)
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Figure 2: Percentage of improving, q(λ)

One can see that the choice L < N/2 can improve reconstruction of edge108

time-series points up to 9%.109

4 First-order MSSA-errors for constant signals110

Consider the system of two time series (F, F̂) = (S, Ŝ) + (E, Ê), with signal terms111

sn ≡ c, ŝn ≡ ĉ and noise terms εn, ε̂n with variances σ2 and σ̂2 correspondingly112

(n = 0, . . . , N − 1). By the similar to the one-dimensional case way, we obtain the113

asymptotic form of variance of the first-order error S(1). In view of much more114

complicated calculations, we get the formulas for L ∼ N/2 (α = 0.5) only.115
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Asymptotic formulas Let L ∼ 0.5N and l ∼ λN/2, 0 ≤ λ ≤ 1, as N → ∞.
Then for the first time series

Ds
(1)
l ∼ G(λ,N) =

2
3N(c2 + ĉ2)2

(
λ2

(
(4c4 + 2c2ĉ2)σ2 + 2c2ĉ2σ̂2

)−

−λ
(
(10c4 + ĉ4 + 7c2ĉ2)σ2 + 4c2ĉ2σ̂2

)
+

(
(8c4 + 3ĉ4 + 9c2ĉ2)σ2 + 2c2ĉ2σ̂2

))
.

G(λ,N) is a quadratic polynomial in λ which decreases from the edges (λ = 0) of116

the time series to its middle (λ = 1).117

Proposition 1. Let σ̂ = σ. Then G(λ,N) ≤ F (1/2, λ, N) and the equality118

G(λ,N) = F (1/2, λ,N) holds if and only if ĉ = 0.119

Proposition 2. G(1, N) = 4σ2/(3N) for any c, ĉ, σ, σ̂.120

It follows from Proposition 1 that for σ̂ = σ MSSA is better than SSA applied121

to the first time series separately. Proposition 2 demonstrates the specific effect:122

the error variance at the middle point of the first time series does not depend on123

characteristics of the second time series. This means (see the paragraph concerning124

the case of the known projector) that the error at the middle point is determined125

by PSE only. For non-middle points, it can be shown that the greater is ĉ, the126

smaller is the variance of the reconstruction error.127

Using supplementary time series to set a model Consider the problem of128

extraction of signal for the case of one time series. If the signal structure is known,129

then we can do the following trick: we can formally involve into consideration the130

additional time series with the given structure and then apply MSSA to the system131

of two time series.132

In the framework of the considered example with a constant signal, let us take133

ŝn ≡ ĉ and σ̂ = 0. If ĉ → +∞, then G(λ,N) tends to 2σ2(3 − λ)/3N . That is,134

we have the 8/3-times decreasing of variance of the edge errors. The error at the135

middle point does not effected by the second time series due to a specific choice136

of window length.137

Comparing with (4), one can see that the obtained limit value is exactly the138

reconstruction error in the case of known projector: F0(α, λ,N) = 2σ2(3−λ)/3N .139

It is not surprising as in fact we set the model of the signal. The same result140

is valid for an arbitrary choice of window length L (it was checked by numerical141

computations).142

As we have mentioned before, behavior of F0(α, λ, N) and F (α, λ, N) in α is143

opposite. In particular, F0(α, 1, N) strongly decreases as α decreases to zero.144

5 Sine-wave signals. Simulation145

Let us take the noisy sine-wave signal S with sn = sin(2πωn). The time-series146

length N and the noise variance σ2 was chosen to provide an approximate sepa-147

rability of the signal from noise. To apply MSSA, the sine-wave signal Ŝ of the148

second time series was taken with the same frequency.149
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Estimation of variance of the first-order reconstruction errors was realized by150

means of simulation on the base of formula (2). Note that it is much more quicker151

than estimation of variance of the full error following the SSA algorithm.152

The simulation gives results analogous to that for constant signals. Namely:153

(1) SSA: Error variance decreases from the edges toward the middle of the time154

series and is approximately constant for time-series points with numbers from155

[L,K].156

(2) SSA: Optimal window length for reconstruction of points close to the edges157

lies between 0.3N and 0.4N .158

(3) MSSA, L = N/2: Error variance decreases from the edges to the middle of the159

time series.160

(4) MSSA: assignment of the model with the help of an artificial time series with161

the same signal frequency as that of S diminishes the variance of the reconstruction162

error.163

Thus, there are reasons to believe that the obtained conclusions are valid for164

a wider class of time series. In particular, the choice of window length less than165

a half of the time-series length can decrease forecasting errors as the forecast is166

based mostly on the last points of the time series.167
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