
1 Example of Time Series Analysis by SSA1

Let us illustrate the 'Caterpillar'-SSA technique [1] by the example of time series analysis.
Consider the time series FORT (monthly volumes of forti�ed wine sales in Australia from January
1984 till June 1994). We examine the whole time series (of length N=174) as well as its subseries
formed from the �rst 120 points. We use designations FORT174 for the former and FORT120
for the latter. Presented �gures illustrate the theoretical concepts and should help to get a
better understanding of the method approach. Visual analysis of the time series depicted in
Fig. 1 indicates that this series has a trend and this trend can be approximated either by linear
function or by exponentially decreasing function. Also it seems that the seasonal component has
complicated and changing behavior. The periodogram the centered time series (Fig. 2) con�rms
this assumption. This periodogram is constructed only on the �rst 168 points for re�ning the
representation, as 168 is divisible by 12, the number of months per year.

The aim of the 'Caterpillar'-SSA analysis is decomposition of this time series into three
components: a trend, a seasonal component and a noise.

The choice of window length. At �rst, let us guess the possible dimension of the signal
(composed of a trend and a periodical component). The trend of the FORT time series is likely
described by eigentriples 1�2; the seasonal component consists of harmonics with frequencies
1/12 (annual periodicity), 1/6=2/12 (half-year), 1/4=3/12, 1/3=4/12, 1/2.4=5/12, 1/2=6/12.
Dimension of each harmonic with frequency less than 1/2 is equal to 2, whereas the harmonic with
frequency 1/2 has the dimension 1 (we assume that changes of the harmonics amplitudes have
exponential character, perhaps with di�erent rates for di�erent harmonics). Thus, the expected
dimension of the time series should not exceed 13. If the time series didn't include a noise
and its components were strongly separable from each other, then it would be su�cient to use
window length 13 for time series decomposition into a trend and a seasonal component. However
a exact separability doesn't practically exist for real-life data and so we need to use theoretical
results about approximate (asymptotic) separability of a slowly varying trend and a harmonic.
To obtain better accuracy we need to choose window length L close to a half of the time series
length (since a convergence rate of separability error to zero has the order 1/min(L,K), where
K = N − L + 1, N denotes the length of our time series). We know that for getting better
separability of periodical components we should select L and K divisible by period. Moreover it
is more important that the smaller of L and K number is divisible by 12, so we choose window
length L = 84 (N = 174, hence K = 91).

The method of eigentriples identi�cation. Let us consider the result of Singular Value
Decomposition of the trajectory matrix performed with the chosen window length. Fig. 3
represents eigenvectors from the �rst six eigentriples (recall that eigentriple=(square root of
eigenvalue, eigenvector, factor vector)= (singular value, left singular vector, right singular
vector)). It should be remarked that the form of factor vectors (so-called right singular vectors) is
almost the same as the form of left ones (eigenvectors) because L is close to K. If we took smaller
window length, then the eigenvectors would have more regular form in comparison with factor
vectors, since the latter ones would re�ect the varying of harmonic components amplitudes.

Let us use the conclusions about singular vectors form for identi�cation of eigentriples
corresponding to a trend and harmonics under the assumption of their approximate separability.

Trend identi�cation. Let us start with identi�cation of a trend. We know that singular
vectors have (in general) the same form as the corresponding components of the initial time
series. Thus we should �nd slowly varying eigenvectors. It can be done by consideration of
one-dimensional plots of eigenvectors. In this instance only the leading eigenvector has the

1This is the example section of [2]. See also http://www.gistatgroup.com/cat/
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required form, i.e., trend is described by one eigentriple. This directly implies that our trend
is approximated by an exponential function. Note that the more complicated form a trend has,
the larger (approximate) dimension it has and larger amount of eigentriples corresponds to it.

Harmonics identi�cation. Now we will try to identify harmonic components (possibly with
varying amplitudes) produced by the seasonal component of the original time series. As shown in
Fig. 3, eigentriples 2�6 correspond to some harmonics, since their singular vectors have the regular
periodical form. We know that every harmonic with frequency smaller than 0.5 produces two
eigentriples. (A harmonic with frequency 0.5 generates one eigentriple with saw-tooth singular
vectors as they are also harmonics with period 2; here we do not see such vectors.) One way to
�nd pairs of components corresponding to harmonics is consideration of two-dimensional plots
of singular vectors.

It is enough to examine only plots which are built for adjacent eigentriples (ordered by
eigenvalues) because it is known that eigenvalues from the corresponding to harmonic pair are
close for a su�ciently long time series. In Fig. 4 you can recognize regular two-dimensional graphs
which form two-dimensional trajectories with vertices in a spiral-shaped curve. It indicates that
these pairs of singular vectors are produced by modulated harmonic components of the initial
time series. In that way, eigentriples (ET in abbreviated form) ET2,3 correspond to period 12,
ET4,5 to 4, ET6,7 to 6, ET8,9 to 2.4 , ET10,11 to 3. We use a notion 'fractional period' for a
harmonic with the frequency inverse to this period.

Supplementary characteristics. Let us describe additional information, which can help
us to identify eigentriples and to con�rm components grouping. Fig. 5 (which depicts logarithms
of eigenvalues) provides such information in this way: a pair of eigentriples corresponding to a
harmonic produces a plateau in this graph.

Analysis of the matrix of w-correlations between reconstructed components of initial time
series is also useful for identi�cation. Fig. 6 depicts the six leading elementary reconstructed
components of the original time series, where each component is formally reconstructed by one
eigentriple. Recall that w-correlation is a weighted correlation between reconstructed time series.
The condition of its equality to zero is necessary for separability of the corresponding time series
components. Fig. 7 con�rms the performed identi�cation: the w-correlation for components from
a pair which corresponds to a harmonic is rather high whereas w-correlations between pairs and
a trend are close to zero (it's re�ected by white color of corresponding elements of the correlation
matrix).

Separation of a signal from noise. Let us dwell upon a question of separation of
components corresponding to a signal from noise components. Firstly, irregular behavior of
singular vectors can indicate their belonging to a set induced by the noise component. This
irregularity should be distinguished from components mixture, which is caused by lack of
strong separability of these components. Boundary between signal and noise components can be
con�rmed by slow (almost without jumps) decreasing of eigenvalues starting from some number.
Secondly, the large set of eigentriples generated by reconstructed components which are correlated
between each other is quite likely to belong to a noise. Fig. 7 contains such block of eigentriples
with numbers 14-84. The question about the pair ET12,13 is still open. On the one hand, this pair
is well separated from the residual. On the other hand, period of the component reconstructed
by ET12,13 is close to 2.33, as the periodogram indicates. Such period cannot be interpreted in
the context of seasonality. It can be caused either by a noise or by a high-modulated harmonic
with period 2.4. It isn't possible to come to a reliable conclusion on this speci�c time series
component, so we will classify ET12,13 as a noise.

We apply standard statistical methods to con�rm the accuracy of performed separation of
a signal from a noise. Fig.8 depicts decomposition of initial time series into three components:
the trend (ET1, on the background of the initial time series), the periodic (seasonal) component
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(ET2-11), and the noise (ET12-84). The statistical criteria con�rm (don't reject) the hypothesis
that the third component is a realization of white noise (three di�erent criteria of independence
produce p-levels larger than 0.4).

Decomposition of the initial time series into components. Fig. 8 demonstrates the
result of grouping of SVD components followed by diagonal averaging. This is a solution of
the stated problem of the initial time series decomposition into 'independent' and 'identi�able'
additive components. Table 1 contains values of w-correlations between represented in Fig. 8
components.

Òàáëèöà 1: w-Correlations for the time series decomposition into the trend, the periodical
component, and the noise

ET1 ET2�11 ET12�84
ET1 1 0 0

ET2�11 0 1 0.016
ET12�84 0 0.016 1

More detailed investigation can be interesting in addition to general time series decomposition.
The matter of interest for the considered time series is the seasonal component behavior. Fig. 9
depicts the leading three components of seasonal component decomposition into the sum of
harmonics. Several facts are worthy of notice: decreasing amplitude of annual harmonic, more
or less invariable behavior of half-year harmonic and increasing amplitude of 4-month harmonic.
Note that standard statistical methods generally assume either stationarity of amplitudes
(additive models) or amplitude variations similar for all harmonics and proportional to the trend
(multiplicative models). It is clear that for 'FORT' time series both models are not appropriate.

The problem of strong separability. The lack of strong separability is the problem of
components mixing. It is caused by close to each other eigenvalues (weights) corresponding to
di�erent components. For demonstration of this e�ect, let us consider subseries consisting of the
�rst 120 points of the initial time series. We choose the window length L equal to 60.

Fig. 10 represents the matrix of w-correlations. Just as for matrix depicted in Fig. 7 we see
here that eigentriples starting from number 12 can be related to a noise. However dark-colored
block formed by ET8-11 re�ects probable mixing of two harmonics. Periodogram analysis of
eigenvectors con�rms this supposition; there is a mixing of harmonics with frequencies 1/3 and
1/2.4=5/12. It is not so essential for extraction of the entire seasonal component; this e�ect
accounts for problems only during the identi�cation. If we wanted to extract, for instance, a
quarterly (three-month) harmonic component, then the lack of strong separability would interfere
with performing such extraction. The comparison of periodograms of the (almost) entire initial
time series (Fig. 2) and of its leading 120 points (Fig. 11) explains why this problem didn't arise
for the initial time series: for FORT174 the contributions of frequencies 1/3 and 1/2.4 are slightly
di�erent whereas they are practically equal for the subseries FORT120.
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Jan80 Jul81 Jan83 Jul84 Jan86 Jul87 Jan89 Jul90 Jan92 Jul93
1208 

1759 

2311 

2862 

3413 

3964 

4516 

5067 

5618 

Ðèñ. 1: FORT174: initial time series

0 0.083 0.167 0.250 0.333 0.417 0.500
0 

32867 

65734 

98600 

131467 

164334 

197201 

230067 

262934 

Ðèñ. 2: FORT174: periodogram of centered time series (the �rst 168 points)

1(94.648%)

0.093 

0.109 

0.124 
2(1.428%)

-0.19 

0.00 

0.19 

3(1.364%)

-0.19 

0.00 

0.19 
4(0.504%)

-0.13 

0.00 

0.13 

5(0.495%)

-0.13 

0.00 

0.13 
6(0.262%)

-0.18 

0.00 

0.18 

Ðèñ. 3: FORT174: one-dimensional plots of eigenvectors
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2(1.428%) - 3(1.364%) 3(1.364%) - 4(0.504%) 4(0.504%) - 5(0.495%)

5(0.495%) - 6(0.262%) 6(0.262%) - 7(0.253%) 7(0.253%) - 8(0.147%)

8(0.147%) - 9(0.144%) 9(0.144%) - 10(0.092%) 10(0.092%) - 11(0.089%)

Ðèñ. 4: FORT174: two-dimensional plots of eigenvectors

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
11.4 

12.5 

13.7 

14.8 

15.9 

17.1 

18.2 

19.3 

20.5 

Ðèñ. 5: FORT174: logarithms of the leading 30 eigenvalues

1(94.648%)

2218 

3082 

3946 
2(1.428%)

-1158 

-251 

656 

3(1.364%)

-518 

-2 

514 
4(0.504%)

-272 

-38 

195 

5(0.495%)

-175 

0 

175 
6(0.262%)

-216 

83 

381 

Ðèñ. 6: FORT174: elementary reconstructed components
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 - [0.00 , 0.05]
 - (0.05 , 0.10]
 - (0.10 , 0.14]
 - (0.14 , 0.19]
 - (0.19 , 0.24]
 - (0.24 , 0.29]
 - (0.29 , 0.33]
 - (0.33 , 0.38]
 - (0.38 , 0.43]
 - (0.43 , 0.48]
 - (0.48 , 0.52]
 - (0.52 , 0.57]
 - (0.57 , 0.62]
 - (0.62 , 0.67]
 - (0.67 , 0.71]
 - (0.71 , 0.76]
 - (0.76 , 0.81]
 - (0.81 , 0.86]
 - (0.86 , 0.90]
 - (0.90 , 0.95]
 - (0.95 , 1.00]

(1) (5) (9) (13) (17) (21) (25) (29)
(1)

(5)

(9)

(13)

(17)

(21)

(25)

(29)

Ðèñ. 7: FORT174: matrix of w-correlations between elementary reconstructed components

1(94.648%)

Jan80 Jan82 Jan84 Jan86 Jan88 Jan90 Jan92 Jan94
1154 

5618 

2-11(4.778%)

Jan80 Jan82 Jan84 Jan86 Jan88 Jan90 Jan92 Jan94
-1387 

1648 

12-84(0.574%)

Jan80 Jan82 Jan84 Jan86 Jan88 Jan90 Jan92 Jan94
-1060 

678 

Ðèñ. 8: FORT174: decomposition of the time series into the trend (on the background of the
initial time series, see the top graph), the seasonal component (in the middle) and the noise (the
bottom graph)

2,3(2.792%)

Jan80 Jan82 Jan84 Jan86 Jan88 Jan90 Jan92 Jan94
-1143 

1101 

4,5(0.999%)

Jan80 Jan82 Jan84 Jan86 Jan88 Jan90 Jan92 Jan94
-349 

351 

6,7(0.515%)

Jan80 Jan82 Jan84 Jan86 Jan88 Jan90 Jan92 Jan94
-375 

376 

Ðèñ. 9: FORT174: decomposition of the seasonal component into the sum of harmonics
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 - [0.00 , 0.05]
 - (0.05 , 0.10]
 - (0.10 , 0.14]
 - (0.14 , 0.19]
 - (0.19 , 0.24]
 - (0.24 , 0.29]
 - (0.29 , 0.33]
 - (0.33 , 0.38]
 - (0.38 , 0.43]
 - (0.43 , 0.48]
 - (0.48 , 0.52]
 - (0.52 , 0.57]
 - (0.57 , 0.62]
 - (0.62 , 0.67]
 - (0.67 , 0.71]
 - (0.71 , 0.76]
 - (0.76 , 0.81]
 - (0.81 , 0.86]
 - (0.86 , 0.90]
 - (0.90 , 0.95]
 - (0.95 , 1.00]

(1) (5) (9) (13) (17) (21) (25) (29)
(1)

(5)

(9)

(13)

(17)

(21)

(25)

(29)

Ðèñ. 10: FORT120: matrix of w-correlations between elementary reconstructed components

0 0.083 0.167 0.250 0.333 0.417 0.500
0 

41009 

82018 

123027 

164036 

205045 

246054 

287063 

328072 

Ðèñ. 11: FORT120: periodogram of the centered time series
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