2 Example of Time Series Forecasting by SSA!

Let us illustrate the ‘Caterpillar’-SSA technique [1] by the example of the time series forecast.
We consider the time series FORT (monthly volumes of fortified wine sales in Australia from
January 1984 till June 1994, Fig. 1). Certainly, time series forecasting should be based on the
preliminary time series investigation. In this case we rely on the time series analysis performed in
|2] (see also http://www.gistatgroup.com/cat/). We examine both the initial time series of length
equal to 174 and its subseries consisting of the first 120 points. We name the former FORT174
whereas the latter FORT120. Presented graphs serves to illustrate concepts and theoretical
aspects of the method.

Generally, forecasting by the Caterpillar-SSA method should be applied to time series
governed (may be approximately) by linear recurrent formulae (LRFs). That’s why we start
with the study of the series FORT from this point of view.

2.1 Linear recurrent formula governing the time series

As we found out in [2], FORT time series can be decomposed into a sum of a signal and a noise.
We performed this decomposition quite well using L = 84 (w-correlation between the signal
component and the noise component is small enough; it is equal to 0.004). Thus, we know that
the signal produces 11 eigentriples, so its trajectory space should be rather well approximated
by a subspace of dimension 11. In turn, the subspace generates a LRF of dimension 83 =L —1
(we call such formulae full LRFs), such that the reconstructed time series (the signal) would
approximated by a time series governed by this LRF.

Table 1 presents the information for 19 (of 83) leading roots of the characteristic polynomial
corresponding to this LRF. The roots (recall that they are complex numbers) are ordered in
descending of their moduli. The label "compl."for the "Type"column of Table 1 notes that this
line relates to two conjugate complex roots. In this case, the absolute value of the root imaginary
part is listed in the table. The first six rows can be interpreted easily: the rows 1-3 and 5-6
correspond to conjugate complex roots, which produce harmonics with periods 6, 4, 2.4, 12, and
3. Moduli greater than one correspond to harmonics with increasing amplitudes, a modulus less
than one reflects decreasing amplitude. These results are in accordance with [2, Fig. 9]. The
forth row of the table corresponds to the real-valued root with modulus equal to 0.997. There
are no more main roots, since their amount should be equal to 11. Other roots are extraneous;
furthermore, their moduli are less than one. Fig. 2 represents all the roots in complex coordinates
(Re,Jm).

Let us check whether the time series is well fitted by the full LRF. Maximum error of total
approximation is equal to 132 and is smaller than 10% of the time series values. Note that we
use the first 83 points as initial data for the LRF and so the approximation error is calculated
starting from the 84th point.

Let us consider a new minimal LRF of dimension 11 generated by the eleven main polynomial
roots. If we took the points 73-83 as the initial data for this LRF, it would better approximate
the time series (maximum error is equal to 94). No wonder that if we took the first 11 points as
the initial data, then the maximum error estimated on the points 12-174 would increase to 495.
Thus we conclude that the time series is well approximated by the time series governed by the
minimal 11-dimensional LRF with roots represented in Fig. 3. So we know the analytical form of
the approximating time series up to constants before addends. Relation between results of local
approximation is the same (magnitudes of errors are smaller).

'This is the example section of [3]. See also http://www.gistatgroup.com/cat/



Tabuma 1: Time series FORT: roots of the characteristic polynomial for the full LRF

N Re Im | Modulus | Frequency | Period | Type
1| 0.497 | 0.871 1.003 1.053 | 5.969 | compl.
2 | -0.002 | 1.000 1.000 1.573 | 3.994 | compl.
3| -0.870 | 0.489 0.998 2.630 | 2.389 | compl.
41 0.997 | 0.000 0.997 0.000 no real
5| 0.861 | 0.497 0.994 0.524 | 12.002 | compl.
6 | -0.478 | 0.866 0.989 2.075 | 3.028 | compl.
7 1-0.094 | 0.972 0.976 1.667 | 3.768 | compl.
8 1-0.391 | 0.894 0.975 1.983 | 3.168 | compl.
91 0.796 | 0.563 0.975 0.615 | 10.212 | compl.
10 | 0.401 | 0.888 0.975 1.147 | 5.480 | compl.

Since we know the exact period of the time series periodical component (due to its seasonal
behavior), we can adjust the LRF by changing the roots so that they correspond to periods 6, 4,
2.4, 12 and 3. (Recall that there is a one-to-one correspondence between linear recurrent formulae
and roots of the characteristic polynomials.) This 11-dimensional formula is called an adjusted
manimal LRF. The local approximation errors corresponding to the adjusted minimal LRF even
decrease here.

Let us give an analytical form of the time series governed by the adjusted minimal LRF:

fn = C10.997" + C50.994" sin(27n /12 + ¢2)+
+C3sin(2mn/4 4 ¢3) + C41.003" sin(27n/6 + ¢4)+ (1)
+C50.998" sin(2mn/2.4 + ¢5) + C60.989" sin(27n/3 + ¢g).

The coefficients C; and ¢; are determined by initial data. The addends are ordered by decreasing
of their contributions to their sum for terms from 1 to 174 (i.e., by eigenvalue shares). Recall
that ordering by roots moduli generally differs from ordering by eigenvalues, since roots moduli
are related to rates of increasing/decreasing of time series components and thereby influence a
future behavior of the time series governed by the corresponding LRF.

Thus, the preliminary investigation implies that the time series FORT well fits to the required
model, so we can start the forecasting.

2.2 Forecast and confidence intervals

Robust long-term forecast. As we demonstrated above, the time series FORT is quite
appropriate for forecasting: it consists of the signal perfectly approximated by the time series
which is governed by the LRF and of the white noise. Fig. 4 depicts the first 24 points of
the recurrent 60-step forecast. This forecast is performed using the full LRF produced by the
subspace, which is generated by the leading 11 eigentriples. The results of the vector forecast as
well as of the recurrent forecast that uses the minimal adjusted LRF 1 are very similar to the
results depicted in Fig. 4 so we don’t present them. Such coincidence just confirms robustness of
the performed forecast.

Fig. 5 represents the bootstrap confidence intervals with confidence level equal to 0.95.
Certainly, we should check whether the residuals satisfy necessary conditions. Thus we should
check whether the residual time series F(? = F — F() where F() is reconstructed using



the leading 11 eigentriples signal, is a realization of independent normally distributed random
variables. Testing of residuals has already been carried out during the analysis of the time series.
Hypothesis of independence is not rejected whereas the criterion for testing of the normality
hypothesis yields the p-level equal to 0.01. This slight non-normality in the residual distribution
can lead to a small modification of the confidence intervals but we can rely on confidence limits
anyway. You see that size of the confidence intervals increases during five years very slow.

Thus, we have constructed the robust 60-step forecast of the FORT time series. We can rely
on it under the assumption that the structure of the time series will not change in future.

Short-term forecast. It is impossible for some data to do a proper long-term forecast. It
can be caused by: 1) small length of a time series as compared to a noise magnitude and/or
to a signal complexity; 2) non-linear structure of a signal. We consider structure of a signal as
non-linear if the signal is poorly approximated by a time series governed by an LRF of relatively
small dimension. Below we demonstrate only the first case.

Let us truncate FORT174 and consider the subseries consisting of the first 120 points of
the initial time series, as well as we did for the time series analysis in |[2]. We use designations
FORT120 for this subseries, whereas FORT174 for the initial time series. The time series analysis
performed in [2, Appendix B] yields that for the window length L = 60 the signal is produced
by the leading 11 eigentriples. Recall that we observed mixing of two harmonics arising at the
singular value decomposition stage. However, this mixture is insignificant for forecasting if we
include these eigentriples 8—11 together.

Let us construct 60-step forecast for the FORT120 time series using the leading 11 eigentriples,
as well as we did for FORT174. The structure of the eigenspace produced by the leading 11
eigentriples is the same both for the initial time series and for the subseries. However, since
FORT120 is shorter, the quality of approximate separability of a signal from a noise is not so
good. Error of global approximation confirms it; its value is equal to 312 (compare with 132 for
FORT174).

When we forecast the truncated time series, we can compare the forecast values with the
known time series values (that is, we have so called validation period). It helps us to estimate the
forecast quality. Fig. 6 depicts the recurrent forecast of FORT120 (the bold solid line) as well as
the FORT174 time series. It can be seen that the forecast describes the future behavior for the
first 24 points very well, but then discrepancy begins to increase. Table 2 contains information
about the leading 19 of 59 roots of characteristic polynomial corresponding to the full LRF used
for the forecast of FORT120. The comparison with Table 1 makes clear that such behavior of
FORT120 forecast is caused by a large modulus of complex conjugate roots corresponding to
amplitude-modulated harmonic with 6-months period (the first line of Table 2). Fig. 6 confirms
the supposition that this half-year harmonic with increasing amplitude is respounsible for the
discrepancy of the forecast with the time series data.

To demonstrate less robustness of the FORT120 time series forecast in comparison with
reliability of the FORT184 forecast, we present confidence intervals. Fig. 7 shows that sizes of
the bootstrap confidence intervals increase falling even into negative values area.

Let us make certain that the lack of separability does account for the poor quality of the
long-term FORT120 forecast rather than changing of the time series structure after the 120th
point. We apply to FORT120 the adjusted minimal LRF produced by the FORT174 time series
and given by the formula (1). The result is presented in Fig. 8 and demonstrates a quite good
quality of the forecast (the bold solid line connects the forecasted points while the real values
are marked by squares).

By means of forecasting truncated time series we can estimate forecast errors, for example,
the mean-square deviation of forecasted values from real values. The recurrent forecast using the



Tabauna 2: Time series FORT120: roots of the characteristic polynomial of the full LRF

N Re Im | Modulus | Frequency | Period | Type
1| 0.505 | 0.878 1.013 1.049 | 5.990 | compl.
2| -0.885 | 0.480 1.007 2.644 | 2.376 | compl.
3| 0.000 | 1.000 1.000 1.571 | 4.001 | compl.
4 1 0.997 | 0.000 0.997 0.000 no | compl.
5| 0.862 | 0.496 0.994 0.522 | 12.033 | compl.
6 | -0.490 | 0.851 0.982 2.093 | 3.002 | compl.
71 0.366 | 0.896 0.968 1.183 | 5.311 | compl.
8| 0.768 | 0.587 0.966 0.652 | 9.635 | compl.
91-0.128 | 0.957 0.966 1.704 | 3.688 | compl.
10 | -0.899 | 0.350 0.965 2.771 | 2.268 | compl.

full forecasting LRF produces mean-square error equal to 549, the vector forecast yields to the
smaller error 535, whereas the forecast using the minimal adjusted LRF diminishes the error up
to 314.

Thus, the considered example of the time series analysis/forecasting confirms theoretical
results about relation between forecast quality and separability accuracy.
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Puc. 1: FORT174: initial time series of monthly volumes of fortified wine sales in Australia
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Puc. 2: FORT174: main and extraneous roots of characteristic polynomial for the full LRF
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Puc. 3: FORT174: roots of characteristic polynomial for the minimal LRF
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Puc. 4: FORT174: recurrent 24-step forecast
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Puc. 5: FORT174: recurrent 60-step forecast and bootstrap confidence intervals
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Puc. 6: FORT120: recurrent 60-step forecast using the full LRF on the background of the real
values
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Puc. 7: FORT120: recurrent 60-step forecast and bootstrap confidence intervals
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Puc. 8: FORT120: Recurrent 60-step forecast using the minimal adjusted LRF (FORT174) on
the background of the real values



