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Abstract

The paper concerns the problem of applying Singular Spectrum Analysis to time
series with missing data. A method of filling in the missing data is proposed and is
applied to time series of finite rank. Conditions of exact reconstruction of missing
data are constructed and versions of the algorithm applicable to real-life time series
are presented. The proposed algorithms result in extraction of additive components
of time series such as trends and periodic components, with simultaneous filling in
the missing data. An example is presented.
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1 Introduction

The paper is devoted to adaptation of Singular Spectrum Analysis for analysis
of time series with missing data.

Ideas of the SSA method originated in many areas of mathematics and its ap-
plications: signal processing, dynamic system analysis, stationary series anal-
ysis, signal detection in the presence of red noise, analysis of series governed
by linear recurrent formulas, Principle Component Analysis, and the others
(see Elsner and Tsonis (1996) and Golyandina et al (2001) for references).
Thus very similar algorithms with different names and various methodologies
of application based on different theoretical results have been obtained. By
the same reason, the different SSA-based methods of forecasting and filling in
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missing data differ from each other. For example, the analysis of stationary
series by SSA results in the method of filling in described in Schoellhamer
(2001); solving the problem of signal detection in the presence of red noise
leads to the method outlined in Kondrashov et al (2005).

In this paper we apply and extend the approach described in details in Golyan-
dina et al (2001). In order to emphasize its distinctive features, this approach
will be called “Caterpillar”-SSA (the name “Caterpillar” was given in Russia,
Danilov and Zhigljavsky (1997)). More information on this approach (papers,
examples, software) is available at http://www.gistatgroup.com/cat/.

The idea of filling in missing data is to a great extent similar to the idea
of forecasting and, in the framework of the considered approach, consists in
continuation of the structure of the extracted component to the gaps caused
by the missing data. In the “Caterpillar”-SSA method, it is assumed that
the forecasted component is (or is approximated by) a time series of finite
rank (see Golyandina et al (2001)) or, what is almost the same, a time series
governed by some linear recurrent formula. Thus, it is not surprising that the
theoretical results related to exact reconstruction of missing values can be
applied only to time series of finite rank.

Similar to the Basic “Caterpillar”-SSA method, the proposed modifications
for analysis of time series with missing data give exact results under rather
restrictive assumptions. Nevertheless, the constructed algorithms are applica-
ble to real-life time series with missing values; they give approximate results
in this case.

Note that in the specific case when missing values are located at the end of the
series, the problem of their filling in coincides with the problem of forecasting.
Therefore, the developed methods are able both to fill in the missing values
and to solve the problem of forecasting. This allows one to look at the problem
of forecasting deeper and provides new ways of its solution.

In Section 2 we present preliminary results, which are not directly related
to the analysis of time series with missing values. The first two subsections
contain results concerning properties of linear subspaces, vectors from these
subspaces and also vectors’ restrictions onto some fixed set of indices. In the
last subsection we introduce the main concepts of the Basic “Caterpillar”-SSA
method for the analysis of time series with no missing data.

Section 3 is devoted to application of the results obtained in the previous sec-
tion to the trajectory subspace and the lagged vectors produced by a series of
finite rank with missing data (note that lagged vectors are, in effect, subseries
of the observed time series). Thus we obtain conditions and formulas for re-
covering the missing components of the considered lagged vector and therefore
for filling in the missing data of the time series.
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In Section 4 we introduce a number of modifications of the “Caterpillar”-SSA
method based on the obtained formulas; these modifications allow both ex-
tracting the components of real-life time series and filling in the missing data.
An example demonstrating the work of the proposed algorithms is presented.

2 Preliminary results

2.1 Recovery of vector’s components in a subspace

Let us give necessary notation. Consider the Euclidean space Rn. Define I =
{1, . . . , n} and denote by S = {i1, . . . , is} ⊂ I an ordered set, |S| = s. Let Es

denote the unit s× s matrix.

By definition, restriction of a vector X = (x1, . . . , xn)T ∈ Rn onto a set of

indices S is the vector X
∣∣∣S = (xi1 , . . . , xi|S|)

T ∈ R|S|.

Restriction of a matrix onto a set of indices is the matrix consisting of restric-
tions of its column vectors onto this set.

Restriction of a q-dimensional subspace Gq onto a set of indices S is the space
spanned by restrictions of all vectors of Gq onto this set; the restricted space

will be denoted by Gq

∣∣∣S . It is easy to prove that for any basis {Hi}q
i=1 of the

subspace Gq the equality Gq

∣∣∣S = span
(
H1

∣∣∣S , . . . , Hq

∣∣∣S
)

holds.

Consider an m-dimensional subspace Dm ∈ Rn. Denote by {Rk}m
k=1 an or-

thonormal basis of the Dm and define the matrix R = [R1 : . . . : Rm]. Fix an
ordered set of indices P .

Proposition 2.1 Let the matrix E|P|−R
∣∣∣P

(
R

∣∣∣P
)T

be non-singular. Then for

any vector X ∈ Dm the following formula expressing X
∣∣∣P in terms of X

∣∣∣I\P
holds:

X
∣∣∣P =

(
E|P| −R

∣∣∣P
(
R

∣∣∣P
)T)−1

R
∣∣∣P

(
R

∣∣∣I\P
)T

X
∣∣∣I\P . (1)

Proof. For simplicity of notation, let P = {1, . . . , |P|}. Denote X1 = X
∣∣∣P ,

X2 = X
∣∣∣I\P , R1 = R

∣∣∣P , R2 = R
∣∣∣I\P . Since RRTX = X for X ∈ Dm and
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RRT =




R1R
T
1 R1R

T
2

R2R
T
1 R2R

T
2


 ,

we have X1 = R1R
T
1 X1 +R1R

T
2 X2. Turning back to the original notation, we

come to the equality

(
E|P| −R

∣∣∣P
(
R

∣∣∣P
)T)

X
∣∣∣P = R

∣∣∣P
(
R

∣∣∣I\P
)T

X
∣∣∣I\P .

This completes the proof. ¤

Lemma 2.1 The following conditions are equivalent:

1) dim Dm

∣∣∣I\P = dim Dm;

2) the vectors
{
Rk

∣∣∣I\P
}m

k=1
are linearly independent and form a basis of the

subspace Dm

∣∣∣I\P ;

3) Y
∣∣∣I\P 6= 0|I\P| for any nonzero vector Y ∈ Dm;

4) span(ei, i ∈ P) ∩ Dm = {0n};

5) the matrix
(
E|P| −R

∣∣∣P
(
R

∣∣∣P
)T)−1

exists.

Proof. Equivalence of the conditions 1) – 4) is evident.

Equivalence of 4) and 5). Proposition 2.1 implies the equivalence of 5) to the

following assertion: for any vector V ∈ Dm

∣∣∣I\P there exists an unique vector

G ∈ Dm such that V = G
∣∣∣I\P . Let us prove the equivalence of 4) to the same

assertion.

Since the vectors
{
Rk

∣∣∣I\P
}m

k=1
span the space Dm

∣∣∣I\P , the vector V can be

expressed as V =
m∑

k=1
akRk

∣∣∣I\P . Then the required vector is G =
m∑

k=1
akRk. Sup-

pose that there are two different vectors G1 and G2 such that V = G1

∣∣∣I\P =

G2

∣∣∣I\P . Consider their difference G1 − G2 =
∑

i∈P αiei ∈ Dm. This difference

is not equal to the zero vector if and only if span(ei, i ∈ P) ∩ Dm = {0n}.
The lemma is proved. ¤

Remark 2.1 It follows from the item 4) of Lemma 2.1 that n − m ≥ |P|.
This constraint on the number of vector’s missing components is a necessary
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condition for applying the formula (1).

Let us consider two special cases, when the first (P = {1}) or the last (P =
{n}) coordinate is expressed through the rest.

Corollary 2.1 Denote ν2 = π1
2 + . . . + πm

2, where πi is the n-th compo-
nent of the vector Ri, and {ROi }m

i=1 are the vectors {Ri}m
i=1 without the last

components (their dimension is equal to n − 1). Suppose that en /∈ Dm and

X = (x1, . . . , xn)T ∈ Dm. Then ν2 < 1 and xn =
n−1∑
k=1

akxn−k, where

(an−1, . . . , a1)
T =

1

1− ν2

m∑

i=1

πiR
O
i . (2)

Corollary 2.2 Denote µ2 = ρ1
2 + . . . + ρm

2, where ρi is the first coordi-
nate of the vector Ri, and {RMi }m

i=1 are the vectors {Ri}m
i=1 without the first

components (their dimension is equal to n − 1). Suppose that e1 /∈ Dm and

X = (x1, . . . , xn)T ∈ Dm. Then µ2 < 1 and x1 =
n∑

k=2
akxk, where

(a2, . . . , an)T =
1

1− µ2

m∑

i=1

ρiR
M
i . (3)

2.2 Projection operator

Consider the subspaces L(1) and L(2) of Rn, of dimensions m and m̃ ≤ n−m
correspondingly. Let us first find the matrix of the operator Π

(1)
I\P correspond-

ing to the orthogonal projection R|I\P| → L(1)
∣∣∣I\P . Denote by {Rk}m

k=1 an

orthonormal basis of the space L(1), R = [R1 : . . . : Rm]. Set V = R
∣∣∣I\P and

W = R
∣∣∣P for convenience of notation.

Proposition 2.2 Assume that the matrix E|P|−WWT is nonsingular. Then

the matrix Π
(1)
I\P of the orthogonal projection operator Π

(1)
I\P has the form

Π
(1)
I\P = VVT + VWT(E|P| −WWT)−1WVT. (4)

Proof. Introduce the matrix A = VTV (A and WTW are m×m matrices).
According to Lemma 2.1, the matrix A is nonsingular as a Gram matrix of a
linearly independent set of vectors; therefore A is reversible. It is known that
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in this case the operator of orthogonal projection onto the space spanned by
the columns of the matrix V has the form Π

(1)
I\P = VA−1VT. The challenge is

to find the explicit formula of the matrix A−1.

Since the vectors {Rk}m
k=1 constitute an orthonormal basis of the space L(1),

we have RTR = Em. On the other hand,

RTR =
(
R

∣∣∣I\P
)T

R
∣∣∣I\P +

(
R

∣∣∣P
)T

R
∣∣∣P = A + WTW.

Thus, A = Em −WTW. Straightforward demonstration of

(Em −WTW)(Em + WT(E|P| −WWT)−1W) = Em

completes the proof. ¤

Denote by Π(1) the operator of orthogonal projection of Rn onto L(1). The
evident conditions of permutability of the projection and the restriction pro-
cedures are given in the following proposition.

Proposition 2.3 If L(1) ⊥ L(2) and L(1)
∣∣∣I\P ⊥ L(2)

∣∣∣I\P , then

Π
(1)
I\P

(
X

∣∣∣I\P
)

=
(
Π(1)X

)∣∣∣I\P

for any X ∈ L(1) ⊕ L(2).

2.3 Basic concepts of the SSA method

Consider a real-valued time series FN = (f0, . . . , fN−1) of length N . Following
Golyandina et al (2001), let us outline notions of the SSA method.

Fix a positive integer L, 1 < L < N , which is called a window length.
The embedding procedure maps the original time series into a sequence of
L-dimensional lagged vectors {Xi}K

i=1, K = N − L + 1, by the formula

Xi = (fi−1, . . . , fi+L−2)
T, 1 ≤ i ≤ K.

The L-trajectory matrix (or, simply, the trajectory matrix) of the series FN is
formed of the lagged vectors: X = [X1 : . . . : XK ].

In other words, the trajectory matrix is
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X = (xij)
L,K
i,j=1 =




f0 f1 f2 . . . fK−1

f1 f2 f3 . . . fK

...
...

...
. . .

...

fL−1 fL fL+1 . . . fN−1




. (5)

Obviously, xij = fi+j−2 and the matrix X has equal values on “diagonals”
i + j = Const. Matrices of this type are called Hankel matrices.

An arbitrary matrix can be approximated by a Hankel matrix in the space of
matrices with the Frobenius norm. This is done by means of the hankelization
procedure, which consists in the replacement of values on “diagonals” i + j =
Const by their arithmetic average. The transition from a matrix to a time
series by means of the hankelization procedure and the subsequent use of the
one-to-one correspondence between Hankel matrices and time series (diagonal
←→ value of the series, see (5)) is called the diagonal averaging procedure.

The linear space L(L) spanned by the lagged vectors is called an L-trajectory
space of columns (or, simply, a trajectory space) of the series FN : L(L) =

L(L)(FN)
def
= span(X1, . . . , XK).

The linear space spanned by the row vectors of the L-trajectory matrix of the
series is called an L-trajectory space of rows (or, simply a trajectory space of
rows).

Definition 2.1 Let 0 ≤ d ≤ L. The series FN is said to have L-rank d, if
dimL(L) = d (briefly, rankL(FN) = d). For zero series define dimL(L) = 0. If
rankL(FN) = d < N/2 for any L such that d ≤ min(L,K), then the series
FN has rank d (rank(FN) = d). If such d exists, the time series FN is called a
series of finite rank.

The trajectory space of a series of finite rank d is denoted by Ld.

The eigenvectors Ui, i = 1, . . . , d = rankX, corresponding to d non-zero eigen-
values of the matrix S = XXT form an orthonormal basis of the trajectory
space. The vectors U1, . . . , Ud are the left singular vectors of the Singular Value
Decomposition of the matrix X.

The following proposition shows that the class of time series of finite rank is
rather wide.

Proposition 2.4 A series, which can be represented as a linear combination
of products of polynomials, exponents, and cosines, is a series of finite rank.
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The following concept is very important in the SSA theory (its asymptotic
analogue is the basis for applying SSA to the analysis of real-life time series).

Definition 2.2 Two series are called separable if the trajectory spaces of
columns are orthogonal and so are the trajectory spaces of rows.

If two series F
(1)
N and F

(2)
N are separable, then the basis Ui, i = 1, . . . , d, of

the trajectory space of the series FN = F
(1)
N + F

(2)
N can be generally split into

two parts, one of the parts is the basis of the trajectory space of F
(1)
N and the

other is the basis of the trajectory space of F
(2)
N . Thus if the series F

(1)
N and

F
(2)
N are separable, then the SSA method is capable of extracting summands

from the observed sum FN = F
(1)
N +F

(2)
N : the projections of the lagged vectors

of the series FN onto the found trajectory subspaces are the lagged vectors of
the series F

(1)
N and F

(2)
N correspondingly.

3 Lagged vectors and trajectory spaces of time series of finite rank
with missing data

3.1 Recovery of missing components of lagged vectors

Consider a time series FN of finite rank d and fix a window length L, d <
min(L,K), K = N − L + 1. Suppose that some data are missing in the
observed series FN (i.e. some data are considered to be unknown), but its
L-trajectory space Ld ⊂ RL is known.

Let us take an incomplete L-lagged vector, which contains both missing and
non-missing data of FN . Denote this vector by X and the ordered set of its
missing components’ indices by P . From now on, I stands for the set {1, . . . , L}
and the set of indices I \P indicates the set of non-missing components of the

vector X. The restrictions X
∣∣∣P and X

∣∣∣I\P are thereby the vectors, which con-

sist of missing and non-missing components of the vector X correspondingly.

To solve the problem of reconstructing the missing components X
∣∣∣P of the

vector X by means of the non-missing components X
∣∣∣I\P , we apply the theory

of Subsection 2.1 (with m = d, Dm = Ld) to the vector X. Suppose that
the trajectory space Ld meets the conditions of Proposition 2.1. Then the
formula (1) solves the problem of finding X

∣∣∣P in terms of X
∣∣∣I\P and therefore

it restores the missing values of the series FN that belong to the vector X.

Let us turn to the case when the initial series with missing data is a sum of two
separable series of finite rank F

(1)
N and F

(2)
N , i.e. FN = F

(1)
N +F

(2)
N . Assume that
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the trajectory spaces L(1) and L(2) of the series F
(1)
N and F

(2)
N correspondingly

are given. Since the series are separable, their trajectory spaces are orthogonal:
L(1) ⊥ L(2). Again, let X be a lagged vector of the series FN with indices of
missing data from P and X = X(1) + X(2), where X(i), i = 1, 2, are the
corresponding lagged vectors of F

(i)
N . Let us solve the problem of finding the

lagged vector X(1) of the first series in terms of X
∣∣∣I\P .

The problem splits into two: finding X(1)
∣∣∣I\P and finding X(1)

∣∣∣P . If the first

problem is solved, we can apply the theory of Subsection 2.1 with m =
rank F

(1)
N and Dm = L(1) to find X(1)

∣∣∣P in terms of X(1)
∣∣∣I\P . The proposi-

tions of Section 2.2 provide us solution to the problem of finding X(1)
∣∣∣I\P if

the condition of orthogonality of the restricted trajectory spaces L(1)
∣∣∣I\P and

L(2)
∣∣∣I\P holds. Since the subspaces L(1) and L(2) are orthogonal, the lagged

vector X(1) of the series F
(1)
N is equal to Π(1)X; therefore the corresponding

terms of the series F
(1)
N can be obtained by orthogonal projection of the vector

X
∣∣∣I\P onto L(1)

∣∣∣I\P .

Thus, X(1)
∣∣∣I\P = Π

(1)
I\PX

∣∣∣I\P , where Π
(1)
I\P is defined by formula (4) with the

matrix R whose columns are the vectors of the orthonormal basis of L(1), and
X(1)

∣∣∣P is expressed in terms of X(1)
∣∣∣I\P by the formula (1) with the same

matrix R. Thereby, the values of the series F
(1)
N belonging to its lagged vector

X(1) have been found, including those which are located on the places of
missing data of the series FN .

3.2 Finding trajectory spaces of the initial time series and of its additive
components

Consider a time series FN with rankL(FN) = d and its L-lagged vectors
{Xi}K

i=1. At first, let us obtain conditions of possibility to find the basis of
the trajectory space Ld = span(Xi, i = 1, . . . , K) using only non-missing val-
ues of the observed series. Denote by C ⊂ {1, . . . , K} the set of numbers of
the complete lagged vectors with no missing entries. Assume that C 6= ∅ and
consider the matrix X̃ consisting of lagged vectors Xi, i ∈ C, as its columns.
Let L̃d = span(Xi, i ∈ C). It is easy to prove the following proposition.

Proposition 3.1 The set Xi, i ∈ C, contains at least d linearly independent
vectors if and only if L̃d = Ld. As this takes place, the eigenvectors U1, . . . , Ud

of the matrix S̃ = X̃X̃T corresponding to d nonzero eigenvalues of S̃ form an
orthonormal basis of the subspace Ld.
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Let us formulate a more constructive sufficient condition.

Proposition 3.2 If the time series FN has L-rank d, e1 /∈ Ld, eL /∈ Ld and the
series contains at least L+d−1 successive non-missing values, then L̃d = Ld.

Proof. In order to prove the proposition, let us show that there are d linearly
independent vectors among complete lagged vectors. We conclude from the
conditions of this proposition that there exists such a number k that lagged
vectors {Xk+i}d

i=1 do not contain missing data.

Since e1 /∈ Ld and eL /∈ Ld, the time series FN can be continued to the infinite
in both directions time series F of L-rank d (the proof is based on Corollary 2.1
and Corollary 2.2 with n = L, m = d, Dm = Ld). It follows that F is a time
series of finite rank d and, in particular, rankd+1 FN = d, e1, ed+1 /∈ L(d+1)(FN).
Therefore, due to Corollary 2.1 with n = d + 1, m = d, Dm = L(d+1)(FN),

Xi+d =
d∑

j=1

aj Xi+d−j, 1 ≤ i ≤ K − d.

Hence all lagged vectors with indices exceeding k + d can be expressed as a
linear combination of vectors Xk+1, . . . , Xk+d.

Analogously, taking into account Corollary 2.2, we find that lagged vectors
with indices from 1 to k can be written as linear combinations of vectors
Xk+1, . . . , Xk+d. Therefore, all the lagged vectors are expressed through the
set of vectors {Xk+i}d

i=1. Since dimension of the trajectory space is equal to
d, these vectors are independent. ¤

We now turn to the case when the observed series is a sum of two separable
series: FN = F

(1)
N + F

(2)
N . Assume that the conditions of Proposition 3.1 are

met and a basis of the trajectory space Ld of the series FN has been found.
Let us formulate the problem of finding the trajectory spaces L(1) and L(2) of
the series F

(1)
N and F

(2)
N using X̃ = X̃(1) + X̃(2).

If the row spaces of the trajectory matrices X̃(1) and X̃(2) are orthogonal and
so are the column spaces, then the eigenvectors U1, . . . , Ud of S̃ forming the
basis of Ld can be generally split into two groups constituting bases of the
spaces L(1) and L(2). The trajectory spaces of columns are orthogonal due to
the separability of the series F

(1)
N and F

(2)
N . It is easy to show that the following

conditions are necessary and sufficient for orthogonality of the row trajectory
spaces:

∑

k∈C
f

(1)
i+k−1f

(2)
j+k−1 = 0, i, j = 0, . . . , L− 1. (6)
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Thus, (6) and the conditions of Proposition 3.1 are sufficient to find bases of
the trajectory spaces L(1) and L(2).

Sum of a constant and a harmonic series of period T can be given as an
example. It is known that if L and K are divisible by T , then the series are
separable. If T successive values are missing, and N and L are large enough,
then it is still possible to find bases of the spaces L(1) and L(2).

3.3 Conditions for orthogonality of the restricted subspaces

Properties of the operator of orthogonal projection Π
(1)
I\P were obtained in

Proposition 2.3 of Section 2.2 (and were used in Section 3.1). In the men-
tioned proposition, the vector X and the set P of indices of vector’s missing
components were considered under the condition that the spaces L(1)

∣∣∣I\P and

L(2)
∣∣∣I\P are orthogonal.

Let L(1) and L(2) be trajectory spaces of the series F
(1)
N and F

(2)
N . The follow-

ing equalities give us the necessary and sufficient condition of orthogonality
L(1)

∣∣∣I\P ⊥ L(2)
∣∣∣I\P :

∑

k∈I\P
f

(1)
i+k−1f

(2)
j+k−1 = 0, i, j = 0, . . . , K − 1. (7)

Remark 3.1 If the series F
(1)
N and F

(2)
N are separable, then the condition (7)

is equivalent to

∑

k∈P
f

(1)
i+k−1f

(2)
j+k−1 = 0, i, j = 0, . . . , K − 1. (8)

Sum of a harmonic series of period T and a constant series, where L, K and
the number of the successive missing data are divisible by T , is an example
when the condition (8) is satisfied. Also, L should be greater than the number
of missing values of the time series, and P specifies the positions of missing
data in a lagged vector containing all the missing data.
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4 “Caterpillar”-SSA for time series with missing data

4.1 Scheme of the algorithm

The result of the “Caterpillar”-SSA algorithms is the decomposition of the
observed time series into additive components such as a trend, periodic com-
ponents and noise. The algorithm for time series with no missing data consists
of two stages: decomposition and reconstruction. Each stage, in its turn, con-
sists of two steps: Embedding and Singular Value Decomposition are the steps
of the first stage, Grouping and Diagonal Averaging are the steps of the second
stage. General structure of the algorithm for the analysis of time series with
missing data is the same, but the steps are somewhat different.

Thus, we have the initial time series FN = (f0, . . . , fN−1) consisting of N
elements, some part of which is unknown. Let us describe the scheme of the
algorithm in the case of reconstruction of the first component F

(1)
N of the series,

based on the observed sum of two time series: FN = F
(1)
N + F

(2)
N .

4.1.1 First stage: decomposition

S t e p 1. Embedding
Let us fix the window length L, 1 < L < N . The embedding procedure
transforms the initial time series into the sequence of L-dimensional lagged
vectors {Xi}K

i=1, where K = N − L + 1. A part of the lagged vectors may
be incomplete, i.e. contain missing components. Matrix X̃ is formed of the
complete lagged vectors Xi, i ∈ C, (assume they form a non-empty set) with
no missing data; this matrix in the case of absence of missing data coincides
with the trajectory matrix of FN .

S t e p 2. Finding the basis
Put S̃ = X̃X̃T. Denote by λ1 ≥ . . . ≥ λL ≥ 0 the ordered eigenvalues of the
matrix S̃ and by U1, . . . , UL the orthonormal system of the eigenvectors of the
matrix S̃ corresponding to these eigenvalues, d = max{i : λi > 0}.

4.1.2 Second stage: reconstruction

S t e p 3a. Choosing the subspace and projection of the complete
lagged vectors
Let a set of indices Ir = {i1, . . . , ir} ⊂ {1, . . . , d} be chosen and the subspace
Mr = span(Ui1 , . . . , Uir) be formed. The choice of the eigenvectors (i.e., their

indices) corresponding to F
(1)
N is conducted in a similar manner as it has been
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done at the grouping stage in the Basic SSA algorithm (see Golyandina et al
(2001) for details ). One of the attributes of the eigenvectors to be chosen is

the resemblance of their form to the form of F
(1)
N . The complete lagged vectors

can be projected onto the subspace Mr in the regular way:

X̂i =
∑

k∈Ir

(Xi, Uk)Uk, i ∈ C. (9)

S t e p 3b. Projection of the incomplete lagged vectors
For each P-incomplete lagged vector with missing components in the positions
from P the given step consists of two parts:

(α) calculation of X̂i

∣∣∣I\P , i /∈ C,

(β) calculation of X̂i

∣∣∣P , i /∈ C.

Since adjacent lagged vectors have a common information (see (5)), there
are many possible ways of solving the formulated problems. Some of these
ways will be discussed in the following sections. The common information also
enables processing vectors with P = I. Note that the step 3b may change the
vectors X̂i, i ∈ C. The result of the steps 3a and 3b is the matrix X̂ = [X̂1 . . . :
X̂K ], which serves as an approximation to the trajectory matrix of the series

F
(1)
N , under the proper choice of the set Ir.

S t e p 4. Diagonal averaging
At the last step of the algorithm, matrix X̂ is transformed into the new se-
ries F̃

(1)
N (so called the reconstructed time series) by means of the “diagonal

averaging” procedure.

Remark 4.1
If the missing data are located on the right end of the series (up to its edge),

the reconstruction of the series F
(1)
N with filling in the missing data is in fact

the forecasting of the series F
(1)
N .

4.2 Clusters of missing data

In order to suggest variants of the step 3b for projecting the incomplete vectors,
let us give definition of clusters of missing data and their classification under
the fixed window length L.

Definition 4.1 A sequence of missing data of a time series is called a cluster
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of missing data if every two missing values from this sequence are separated
by less than L non-missing values and there are no missing data among L
neighbors (if they exist) of the right/left element of the cluster. Thus, a group
of not less than L successive non-missing values of the series separates clusters
of missing data.

Definition 4.2 A cluster is called right/left if its right/left element is located
at the distance less than L from the right/left end of the series. If the left or
the right element of the cluster coincides with the end of the series, the cluster
is called extreme. Neither right nor left cluster is called inner. A cluster is
called continuous if it consists of successive missing data.

Definition 4.3 A set of successive incomplete lagged vectors is called a lagged-
vectors set of a cluster of missing data, if it consists of all vectors that include
missing data from the considered cluster.

Since sets of the lagged vectors of different clusters don’t contain any infor-
mation about each other and are independent from this point of view, we will
further consider one cluster of missing data and the corresponding set of the
lagged vectors Xi, l ≤ i ≤ p. The step 3b can be performed independently for
each cluster of missing data (for each lagged-vectors set).

4.3 Methods for reconstructing values at the positions of the non-missing
components

Here we describe possible solutions to the problem (α) of calculation of X̂i

∣∣∣I\P ,

l ≤ i ≤ p.

The method when the operator of orthogonal projection onto Mr

∣∣∣I\P is ap-

plied to Xi

∣∣∣I\P for each P-incomplete lagged vectors of the cluster of missing

data is called “Π Projector”. Proposition 2.2 with m = r, L(1) = Mr, and
the matrix R, whose columns are the eigenvectors Ui, i ∈ Ir, provides con-
ditions of applying this method and the formula for calculation of Π

(1)
I\P in

X̂i

∣∣∣I\P = Π
(1)
I\PXi

∣∣∣I\P .

One more method can be applied to continuous (extreme or inner) clusters.
This method is based on the fact that values of the diagonal entries of the
trajectory matrices (recall that X̂ is an approximation of the trajectory matrix

of the series F
(1)
N ) with indices (i, j), i + j = Const, are equal. Let us consider

an inner cluster at first. The positions of the non-missing components X̂q

∣∣∣I\P
in the corresponding set of vectors X̂q, q = l, . . . , p, form two “triangles”
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(right and left). Denoting by x̂i,j the i-th element of the vector X̂j, we will
describe the method by the example of filling in the left “triangle”, which will
be expressed as the set of the s-th “diagonals”: {(i, j) : i + j = s, l + 1 ≤
s ≤ l + L − 1, l ≤ j ≤ l + L − 2}. Note that “triangle” and “diagonal” are
interpreted as parts of the matrix [X̂l : . . . : X̂p].

Since we deal with the inner cluster, there are l0, l0 ≥ 1, left adjacent vectors
X̂l−m, m = 1, ..., l0, which are complete and all their components have already
been calculated at the step 3a. If we consider the matrix [X̂l−l0 : . . . : X̂p],
then the method called “Components of adjacent vectors” consists in the re-
placement of all the components of the s-th diagonal x̂i,j with i + j = s
and l − l0 ≤ j ≤ l + L − 2 by the average value of x̂i,j with i + j = s,
l − l0 ≤ j ≤ l − 1. Note that the method also changes some components of
vectors X̂l−l0 , . . . : X̂l−1.

A fully similar procedure is carried out with the right “triangle”. For extreme
clusters, only one of “triangles” needs to be filled.

4.4 Methods for reconstructing values at the positions of missing components

Here we propose several solutions to the problem (β) of calculation of X̂i

∣∣∣P ,

l ≤ i ≤ p, if vectors X̂i

∣∣∣I\P have already been obtained.

For the first method, we will require each vector of the lagged-vectors set to
satisfy the conditions of Proposition 2.1. If all the conditions are met, then we
can reconstruct missing components of each vector by the formula (1), where
m = r, Dm = Mr and R is a matrix whose columns are the eigenvectors
Ui, i ∈ Ir. Such a method of reconstructing missing data will be called a
“simultaneous filling in”. Note that conditions for applying the simultaneous
filling in are restrictive enough. In particular, it is impossible to apply the
method when there are no non-missing components just in one vector from
the lagged-vectors set.

Other methods are based on the fact that values with indices (i, j) on the
diagonals i + j = Const of the trajectory matrices are equal. Therefore, we
can reconstruct missing components of one of the lagged vectors and use the
obtained values for filling in missing entries of the adjacent vectors.

Consider the lagged-vectors set Xl, . . . , Xp of the considered cluster of missing

values. We assume that the vectors X̂q

∣∣∣I\P , q = l, . . . , p, have already been

calculated by one of the methods described in Subsection 4.3. Let us describe
several variants of the methods of sequential filling in.
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1) Let the considered cluster be not a left cluster. In this case the left vector
Xl contains only one missing entry, which is located on the place of the last
coordinate, so its set of indices of missing entries is P = {L}. Therefore
Corollary 2.1 can be applied. If eL /∈Mr, then we can obtain the last value y
of the vector X̂l as a linear combination of the previous values with coefficients
given by the formula (2). Further this value y is used to fill in the (L − j)-
components of the vectors X̂l+j, j = 1, . . . , L − 1. After this procedure the

adjacent vector X̂l+1 will have only one missing entry on the place of the last
coordinate (if the cluster is continuous). Therefore the whole procedure may
be repeated once more. And so on. Such a method will be called a sequential
filling in from the left. Note that if the cluster of missing data is not continuous,
the filling procedure need not be applied to some of the vectors Xq, l < q < p.

2) The sequential filling in from the right is fully analogous to the sequential
filling in from the left and comes down to filling in the first coordinate by
means of the formula (3) given in Corollary 2.2. Therefore, the applicable
conditions of this method are: the cluster of missing data is not a right cluster
and e1 /∈Mr.

3) Different combination of the sequential filling in from the left and from the
right (so called two-sided methods) can be considered.

Note that the conditions of sequential filling in are less restrictive in compar-
ison with simultaneous imputation; however, errors can accumulate.

Remark 4.1 Consider a continuous cluster of missing data of length m, which
is a right extreme cluster (and there are no other clusters of missing data in
the series). If the methods “Components of adjacent vectors” and “Sequential
filling in from the left” are applied to this cluster, the result will coincide with
the recurrent forecast (see Golyandina et al (2001)) for m terms ahead; the
forecasted time series component is extracted by Basic SSA from the times
series consisting of the first N −m points.

4.5 A formal modification of the “Caterpillar”-SSA algorithm for series with
missing data

The above-described methods of filling in use a detected structure of the time
series. As an addition to them, a formal version of filling in missing data can
be proposed. In this modification, the inner product of vectors is replaced by
a similar operation, which can be applied to vectors with missing components.
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4.5.1 “*” operation

Let us introduce a “*” operation as a formal substitution of the inner prod-
uct of vectors if they include missing entries. Consider two vectors A =
(a1, . . . , an)T and B = (b1, . . . , bn)T and denote the sets of indices of their
missing components as A and B correspondingly. Suppose that |A ∪ B| < n.
Let us define the “*” operation by the formula

(
A,B

)∗
= AT ∗B =

n

n− |A ∪ B|
∑

k:k/∈A∪B
akbk.

It is clear that if we multiply complete vectors with no missing components,
the result of the “*” operation coincides with the result of the inner product
in Rn. For matrices AT = [A1 : . . . : Ak] and B = [B1 : . . . : Bl], Ai, Bi ∈ Rn,
the “*” operation is defined as A∗B = {(Ai, Bj)

∗}k
i=1

l
j=1. If all vectors of both

matrices don’t contain missing entries, A ∗B = AB.

4.5.2 Modifications using the “*” operation

Let us propose the following modifications.

1. In place of the matrix S̃ at the second step of the algorithm described in
Section 4.1, let us take the matrix formally calculated by the other formula:
S̃ = X ∗ XT, where the matrix X is the trajectory matrix of the series FN

consisting of all the lagged vectors, both complete and incomplete.

We can generalize the above proposed method as follows: consider a value τ ,
0 ≤ τ ≤ L, which is called a threshold of missing components. Then form the
matrix X̃(τ) from the lagged vectors, which contain not more than τ missing

components, and put S̃ = S̃(τ) = X̃(τ) ∗ X̃T
(τ). Note that the matrix X̃(0)

coincides with X̃ consisting of the complete vectors with no missing data, and
that X̃(L) = X.

Remark 4.2 The known Toeplitz modification of Basic SSA is used for sta-
tionary time series. Toeplitz SSA can be adjusted to time series with missing
values in the analogous manner, by substitution of “*” for the inner product:
the matrix S̃ is equal to KC̃, where C̃ = {c̃ij} and for F (k,g) = (fk, . . . , fg)

T

c̃ij =
1

N − |i− j|
(
F (0,N−|i−j|−1), F (|i−j|,N−1)

)∗
, 1 ≤ i, j ≤ L.

This way of constructing the matrix S̃ can be called Toeplitz.
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2. At the step 3, all the reconstructed vectors can be calculated like projections
(compare with (9)):

X̂i =
∑

k∈Ir

(Xi, Uk)
∗ Uk, i = 1, . . . , K. (10)

Here the “*”-product (Xi, Uk)
∗ has a meaning of the k-th principal component

of the vector Xi. Therefore, this method can be called Projection by means of
principal components.

Remark that simultaneous application of the “Toeplitz” and “Projection by
means of principal components” modifications for the analysis of station-
ary series with missing data was suggested in Schoellhamer (2001). For non-
stationary or short series these modifications provide poor results.

4.6 Example

To demonstrate the work of the methods of filling in missing data, let us
consider the famous time series of length 144 representing monthly numbers
of passengers (in thousands) on the international airlines, since January, 1949
(the data was published for the first time in Brown (1963)).

Let us remove 12 known values, starting with the 68-th point (i.e. we con-
sider that values are unknown for a year since August, 1954). For such kind
of artificially missing data we can estimate the accuracy of their recovering
for different versions of the algorithm. Also, to simulate forecast, we add 12
missing data after the last, 144-th point of the series. The time series obtained
is illustrated in Fig. 1.

Fig. 1. The initial time series with missing data

The first question is how to choose the window length L. In the case of no
missing data, the general recommendation is to choose the window length
close to the half of the series length and divisible by the period of expected
periodicity (12 months here). The window length equal to 72 meets these
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Fig. 2. The reconstructed time series with filled in data

conditions. However, under such choice of L all the lagged vectors will contain
missing data. Let us choose a smaller length in order to avoid using the “*”
operation. The choice of L = 36 provides us 62 complete lagged vectors with
no missing data.

The analysis of the eigenvectors U1, . . . , UL (for real-life series it is common
that d = L) shows that the eigenvectors with indices 1, 6, and 9 correspond to
a trend and the eigenvectors with indices 2–5, 7–8, and 10–13 correspond to
a seasonal component. All the rest eigenvectors may be classified as produced
by noise. Therefore, we will choose r = 13 and Ir = {1, 2, . . . , 13} in order to
reconstruct the deterministic component of the series (a signal).

All the eight variants of the step 3b are applicable to the first continuous inner
cluster of missing data: two variants of (α) (“Π Projector” and “Components of
adjacent vectors”), and four variants of implementing (β) (simultaneous filling
in and three types of sequential filling in). A comparison of the reconstruction
results with the values that were artificially removed from the initial time
series shows an advantage of the variant “Π Projector” with simultaneous
filling in the missing data. Reconstruction error therewith is approximately
equal to 6 for the missing data and is equal to 4.75 (this is not much less) for
other terms.

We apply the same method to fill in the second cluster of missing data. The
result is illustrated in Fig. 2. The reconstructed series is marked by the dotted
line in the area of missing data.
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