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Abstract

We demonstrate capabilities of ‘Caterpillar’-SSA, a novel and powerful model-free method of time series analysis and forecasting. The main tasks which `Caterpillar’-SSA can be used for include finding time series structure (for example, extraction of trend and/or oscillatory components of the series), smoothing, detection of structural changes, continuation of time series. Several examples of application of the ‘Caterpillar’-SSA technique to retail sales/inventories time series are presented.
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1 Introduction

Ideas of ‘Caterpillar’-SSA method were independently developed in Russia (St. Petersburg, Moscow) and in UK and USA (under the name of SSA; that is, Singular Spectrum Analysis). The thorough description of theoretical and practical foundations of the ‘Caterpillar’-SSA technique (with a lot of examples) can be found in (Danilov and Zhigljavsky, 1997; Golyandina et al, 2001). For a sort of elementary introduction to the method see (Elsner and Tsonis, 1996).

‘Caterpillar’-SSA as a method of analysis performs four steps. At the first step (called the embedding step), a one-dimensional series 
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. This delay procedure gives the first name to the whole technique. The sole (and very important) parameter of the embedding step is the window length 
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. It should be big enough but not greater than a half of series length. Vectors 
[image: image6.wmf]i

X

 form columns of the trajectory matrix: 
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The second step, SVD step, is the singular value decomposition of the trajectory matrix into a sum of rank-one bi-orthogonal elementary matrices and gives the second name of the technique:
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Elementary matrix 
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 is determined by the equality 
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 stand for left and right singular vectors of the trajectory matrix. We assume that eigenvalues 
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The first two steps together are considered as the decomposition stage of ‘Caterpillar’-SSA.

The next two steps form the reconstruction stage. The grouping step corresponds to splitting the elementary matrices into several groups and summing the matrices within each group. The result of the step is a representation of the trajectory matrix as a sum of several resultant matrices: 
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The last step (diagonal averaging) transfers each resultant matrix into a time series, which is an additive component of the initial series 
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th term of the resulting series is obtained by averaging of 
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Diagonal averaging is a linear operation and maps the trajectory matrix of the initial series into the initial series itself. In this way we obtain a decomposition of the initial series into several additive components. The result is the expansion 
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The general purpose of the ‘Caterpillar’-SSA analysis is the decomposition (1) with additive components 
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 that are ‘independent’ and ‘identifiable’ time series; this is what we mean when we talk about analyzing the structure of time series by ‘Caterpillar’-SSA. Sometimes, one can also be interested in particular tasks, such as ‘extraction of signal from noise’, ‘extraction of oscillatory components’ and ‘smoothing’. For a properly made ‘Caterpillar’-SSA expansion, a component 
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 in (1) can be identified as a trend of the original series 
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, an oscillatory series (for example, seasonality) or noise.

There are two parameters in ‘Caterpillar’-SSA: the first is an integer 
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, the window length, and the second parameter is structural; loosely speaking, it is the way of grouping of elementary matrices. (Since each matrix component of the SVD is completely determined by the corresponding eigentriple, we shall talk about grouping of the eigentriples rather than grouping of the elementary matrices.) 

The problem of selection of ‘Caterpillar’-SSA parameters is thoroughly discussed (from theoretical and practical viewpoints) in (Golyandina et al, 2001; Danilov and Zhigljavsky, 1997). As for the way of grouping, it is useful to mention that under the proper choice of window length 
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 singular vectors in a sense ‘repeat’ the behavior of the corresponding time series components. In particular, trend of the series corresponds to slowly varying singular vectors. Harmonic component produces a pair of left (and right) harmonic singular vectors with the same frequency, etc. 

Depending on the specifics of time series and the choice of parameters, a lot of problems related to additive expansion of time series can be solved by means of the ‘Caterpillar’-SSA technique. Among others, we can mention:

· Finding trends of different resolution;

· Smoothing;

· Extraction of seasonality components;

· Simultaneous extraction of cycles with small and large periods;

· Extraction of periodicities with varying amplitudes;

· Simultaneous extraction of complex trends and periodicities;

· Finding structure in short time series.

All these tasks correspond to basic capabilities of ‘Caterpillar’-SSA. In addition, the method has several essential extensions. First, the multivariate version of the method admits simultaneous expansion of several time series; see, for example, (Broomhead and King, 1986; Danilov and Zhigljavsky, 1997). Second, the ‘Caterpillar’-SSA ideas lead to several forecasting procedures for time series; see (Danilov and Zhigljavsky, 1997; Golyandina et al, 2001). Lastly, the same ideas are used in (Golyandina et al, 2001) for the purpose of change-point detection. 

2 Examples

The ‘Caterpillar’-SSA technique can be applied for various time series arising in economics. Our aim is to demonstrate the capabilities of the method on the example of not adjusted monthly time series of US retail sales and inventories measured in millions of dollars (see http://www.economagic.com/). The data covers the time from late 60s up to February-March 2001. 

2.1 Time series decomposition: trend, seasonality and residuals

Figure 1 demonstrates the decomposition of inventories/sales ratio time series for nondurable goods (monthly data from January 1981 till February 2001) obtained under the choice of the window length 
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. Top graph shows the extracted trend on the background of the ratio series, the one-year cycle of the series can be found in the middle graph and the bottom graph shows the residuals. If we add together the trend and the residuals we come to the ratio series adjusted for seasonal variations. 

Standard methods of time series analysis can give similar results. Yet the ‘Caterpillar’-SSA technique does not need any a priori parametric model for trend and oscillations. Moreover, trend and periodicities are simultaneously obtained by the sole procedure.

Let us comment on actions that lead us to extraction of both trend and seasonality. Due to the ‘Caterpillar’-SSA algorithm, we start with the choice of the window length 
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. Theoretical results tell us that 
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 should be big enough. Furthermore, if we know that the time series has a periodic component with an integer period (for example, if this component is a seasonal component), then it is better to take the window length proportional to that period. (For monthly data the period of seasonal component is equal to 12.) Therefore we take 
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Singular Value Decomposition of the trajectory matrix gives us 120 eigentriples, ordered by their contribution (share) into the decomposition. Since in most cases the eigentriples with small share are related to the noise component of the series, we identify the set of leading eigentriples. Slowly varying behavior of the left (and right) singular vectors with numbers 1 and 11-13 points out that the corresponding components are related to the trend. Eigentriples with numbers 2-10, 14, 15, 18, and 19 are identified (also by the analysis of their singular vectors) as ‘seasonal’ eigentriples. Note that though some low-frequency non-seasonal oscillations are referred to the residual series, they can be extracted together with trend and seasonality components.
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Figure 1
2.2 Simultaneous analysis of several time series

Suppose we have several time series with the same time domain (for example, sales and inventories, sales of durable and nondurable goods, sales and advertising). Then we can be interested in finding concurrent components of all series. Multidimensional ‘Caterpillar’-SSA method seems to give good solution of the problem. Figure 2 shows the concurrent seasonalities of US retail sales and inventories for durable goods (top graph) and both trends on the background of the initial sales/inventories series (bottom graph). Top plots of both graphs correspond to inventories.
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Figure 2
The relations between two pairs of concurrent seasonal components of sales and inventories series are depicted in Figure 3. Figure 3 shows that 6-months amplitude-modulated oscillations of both series are synchronous (bottom graph), while pure annual oscillations are almost opposite (top graph). In both graphs thick lines correspond to sales series.
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Figure 3
Further development of the technique gives rise to efficient algorithms of change-point detection and forecasting of time series. 

2.3 Forecasting

Suppose we have extracted some additive component of a time series. Theory shows that under natural conditions (and under proper choice of parameters) this component can be approximately described by a certain linear recurrent formula (equation). The ‘Caterpillar’-SSA method allows both extracting the component and finding the corresponding linear recurrent formula. This formula can be used to forecast the series component. 

Consider the inventories/sales ratio time series for durable goods (monthly data from January 1981 till February 2001; see Figure 4). To estimate the forecast quality, we cut off the last 12 terms of the series (that is, we start forecasting from March 2000).
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Figure 4
We select window length 
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 for decomposition and take 16 leading eigentriples for the reconstruction (that is, for the approximation) of the ratio series.
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Figure 5
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Figure 6
Figures 5 and 6 show the result of prediction for two years (from March 2000 till February 2002). In Figure 5 thin line corresponds to the last 26 terms of the initial ratio series while thick solid indicates the reconstruction (up to February 2000) and forecast. Vertical line shows the truncation point. The first 12 forecasted values are very close to real ratios for the period from March 2000 till February 2001. Therefore it is natural to suppose that the subsequent 12 values of forecast would describe the future with good precision.

Figure 6 shows 95% bootstrap confidence intervals of reconstruction and forecast (thin lines; thick solid corresponds to the initial ratio series). Confidence intervals are obtained by simulation under the hypothesis that the residuals of the reconstruction form a normal white noise series. 

2.4 Change-point detection

Since the ‘Caterpillar’-SSA method can identify the structure of time series, it is possible to analyze the structure of time series intervals and to find out similarities and differences in these structures. That calls forth the change-point detection method based on the ‘Caterpillar’-SSA ideas. The method allows finding changes in trends of different series as well as in periods or phases of their oscillatory components.

The problem of change-point detection in trends is very important in economics. Let us consider the series US retail sales for gasoline service stations (monthly data from January 1967 till March 2001, see bottom graph of Figure 7). 
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Figure 7
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Figure 8
Figure 7 (top graph) demonstrates the characteristic (‘detection function’) that reflects the difference in main tendencies between moving time series intervals and the first interval of the gasoline series. All intervals have the length equal to 48 and describe 4-year behavior of the gasoline retail sales.

Labels of the axis X correspond to the last points of the moving intervals. Chosen eigentriples determine the trend and the main (annual) periodicity of each subseries. The start of the abrupt increase of the detection function indicates the change of the (initial) time series structure. Comparison of the detection function with the gasoline series shows that the dates May 1974, May 1979, January 1986, July 1990 and January 1998 (approximately) can be considered as the change-points of the trend of the series. 

To describe the detected changes in the trend it is useful to consider the estimates of local rates of exponentials approximating moving time series intervals. These estimates are also produced by the `Caterpillar’-SSA technique and are connected with the roots of characteristic polynomials related to the corresponding linear recurrent formulas.

Figure 8 describes the dependence of local exponential rates on last dates of 48-months moving intervals. It shows that two largest peaks of the detection function have different origins. The first peak (starting at the middle of 1979) indicates the increase of the gasoline series trend (the exponential rate is greater than 1) while the second (1986) corresponds to the decrease of the trend (the exponential rate is less than 1).

Up-to-date information concerning the `Caterpillar'-SSA method/software can be found on the sites http://vega.math.spbu.ru/caterpillar/ (in English) and http://www.gistatgroup.com/gus/ (in Russian).
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