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Abstract

Reconstruction and forecast of multidimensional signals in the presence of
noise is considered. SSA-based methods (MSSA, CSSA) are applied. Com-
parison of approaches and investigation of their features are performed by
means of statistical simulation.

Introduction

Let us consider the problem of signal reconstruction and forecasting for a system
of simultaneous time series. The Singular Spectrum Analysis (SSA) method [1, 2]
and its extensions for processing multidimensional time series (Multi-channel SSA
(MSSA) and Complex SSA (CSSA) [3, 4]) can be used for solving this problem.

The questions concerning choice of parameters for signal reconstruction and
forecasting, relation between optimal parameters for analysis and forecast, com-
parison of accuracies of different SSA-based methods arise. Unfortunately, only
few of these questions have theoretical answer at the moment due to complicated
nonlinear construction of methods. That is why we use statistical simulation here.
Namely, we simulate time series consisting of a signal and of white noise, then
extract signal, forecast it and finally study the estimated errors. It is important
to choose a proper class of considered signals to obtain meaningful results.

The first step of SSA-based methods is the embedding procedure: transforma-
tion of the time series to a sequence of so-called lagged vectors. The linear space
spanned by these lagged vectors is called the trajectory space. Just the trajectory
space (its dimension, form of basis vectors) determines the time series structure
from the viewpoint of SSA. Generally, trajectory spaces can vary for different mul-
tivariate extensions of SSA. In some sense the more complex time series structure
leads to the bigger dimension of the trajectory space.

Consider a system H(k) = (h
(k)
j )N−1

j=0 , k = 1, . . . , s, of s signals with lengths N .

Let rk denote the trajectory dimension of H(k) (i.e., dimension of the trajectory
spaces generated by onedimensional SSA applied to this time series) and r denote
the multivariate trajectory dimension generated by MSSA applied to the time
series system as a whole. Relation between r and rk, k = 1, . . . , s, is studied in [4].
In particular, it is shown that rmin ≤ r ≤ rmax, where rmin = max{rk, k = 1, . . . , s}
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and rmax =
∑s

k=1 rk. The case r = rmax is worst for MSSA and means that
the time series don’t contain matched components. The case r < rmax indicates
the presence of matched components and can lead to advantages of simultaneous
processing of the time series system.

Section 1 contains a brief description of the used SSA-based algorithms (see
the full description of algorithms and the developed theory in [2]–[4]). Section 2
provides results of simulation applied to systems of two series of noised harmonic
signals. Since the complex-valued CSSA method can be applied to a system of
only two real-valued time series, we consider the case s = 2 to include CSSA into
the scope of the paper.

1 Algorithms

Consider a system F (k) = (f
(k)
j )N−1

j=0 , k = 1, . . . , s, of s time series with length
N . This section contains a brief description of SSA-based algorithms used for
extraction (reconstruction) of the signals and their forecasting.

The algorithms are formulated only for MSSA since SSA is its particular case
for s = 1 and CSSA is a natural transfer of SSA to the complex-valued case.

1.1 MSSA analysis

1st step: Embedding
Let L be an integer (window length), 1 < L < N . For each time series F (k) the em-

bedding procedure formsK = N−L+1 lagged vectorsX
(k)
j = (f

(k)
j−1, . . . , f

(k)
j+L−2)

T,

1 ≤ j ≤ K. The trajectory matrix of the multidimensional series (F (1), . . . , F (s))
is a matrix L×Ks and has the form

X = [X
(1)
1 : . . . : X

(1)
K : . . . : X

(s)
1 : . . . : X

(s)
K ] = [X(1) : . . . : X(s)].

The trajectory space is a linear space spanned by lagged vectors (columns of the
trajectory matrix).

2nd step: Singular Value Decomposition (SVD)
Let S = XXT, λ1 ≥ . . . ≥ λL ≥ 0 be eigenvalues of the matrix S, d = max{j :
λj > 0}, U1, . . . , Ud be the corresponding eigenvectors, and Vj = XTUj/

√
λj ,

j = 1, . . . , d, be factor vectors. Denote Xj =
√
λjUjV

T
j . Then the SVD of the

trajectory matrix X can be written as

X = X1 + . . .+Xd. (1)

3rd step. Grouping
Once the expansion (1) has been obtained, the grouping procedure partitions the
set of indices {1, . . . , d} into m disjoint subsets I1, . . . , Im. Let I = {i1, . . . , ip}.
Then the resultant matrix XI corresponding to the group I is defined as XI =
Xi1 + . . .+Xip . Thus, we have the grouped decomposition

X = XI1 + . . .+XIm . (2)
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4th step: Diagonal averaging
The last step is in a sense opposite to the first step and transforms each matrix
of the grouped decomposition (2) into a system of new (reconstructed) series of
length N by hankelization-like procedure (see the formal description in [2, 3]).

Thus, the result of SSA-based algorithms is an expansion of the (multidimen-
sional) time series to sum of m series; parameters are the window length L and
the way of grouping. Note also that the case of two series components (m = 2) is
often more sensibly regarded as the problem of separating out a single component
(for example, as a noise reduction) rather than the problem of separation of two
terms. In this case, we are interested in only one group of indices related to the

signal, namely I1. Designate by F̃ (k) = (f̃
(k)
j )N−1

j=0 , k = 1, . . . , s the reconstructed
time series corresponding to the signal group of indices.

1.2 MSSA forecast

Let the leading r eigentriples (λj , Uj , Vj) be identified and chosen as related to the
signal (r is treated as the signal trajectory dimension and I1 = {1, . . . , r}). Then
the algorithm of MSSA analysis gives us the system of s reconstructed signals

F̃ (k) = (f̃
(k)
j )N−1

j=0 , k = 1, . . . , s. Denote by RN = (f̃
(1)
N , f̃

(2)
N , . . . , f̃

(s)
N )T the vector

of forecasted signal values for each time series from the system. Below we rewrite
forecasting formulae for two variants of MSSA forecast: MSSA-L (generated by
{Uj}rj=1) and MSSA-K (generated by {Vj}rj=1). These one-term ahead forecasting
formulae can be applied to M -term ahead forecast by recurrence. Note that the
SSA forecast coincides with the MSSA-L forecast for s = 1.

1.3 MSSA-L

Denote by Y the matrix consisting of the last L − 1 values of the reconstructed
signals:

Y =


f̃
(1)
N−L+1, . . . , f̃

(1)
N−1

f̃
(2)
N−L+1, . . . , f̃

(2)
N−1

...

f̃
(s)
N−L+1, . . . , f̃

(s)
N−1

 ,

by U▽
j the vectors of the first L− 1 coordinates of the eigenvectors Uj , by πj the

last coordinates of the eigenvectors and, finally, ν =
r∑

j=1

π2
j . If ν < 1, then the

MSSA-L forecast exists and can be calculated by the formula

RN = YRL, where RL =
1

1− ν2

r∑
j=1

πjU
▽
j ∈ RL−1. (3)

Note that the formula (3) means forecasting each of signals by the same linear
recurrent formula generated by the whole system.
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1.4 MSSA-K

Let V ▽s
j ∈ R(K−1)s be the vectors consisting of all coordinates of the Vj but

coordinates with numbers Kp (we denote them π
(p)
j ), p = 1, . . . , s. Introduce

vectors of the last K − 1 values of the reconstructed signals

Z(m) = (f̃
(m)
N−K+1, . . . , f̃

(m)
N−1)

T, m = 1, . . . , s,

and denote Q = (V ▽s
1 , V ▽s

2 , . . . , V ▽s
r ),

Z =


Z(1)

Z(2)

...
Z(s)

 , W =


π
(1)
1 π

(1)
2 . . . π

(1)
r

π
(2)
1 π

(2)
2 . . . π

(2)
r

...
...

. . .
...

π
(s)
1 π

(s)
2 . . . π

(s)
r

 .

If the inverse matrix (Iss−WWT)−1 exists and r ≤ (K−1)s, then the MSSA-
K forecast exists and can be calculated by the formula

RN = (Iss −WWT)−1 WQTZ. (4)

Note that the formula (4) means forecasting signals by some multidimensional
linear recurrent formula.

2 Numerical investigation

Let us observe (F (1), F (2)) = (H(1),H(2)) + (N (1), N (2)), where (H(1), H(2)) is a
two-dimensional signal consisting of two harmonic time series, N (1) and N (2) are
realizations of independent normal white noises. Then we can use standard simula-
tion procedure to obtain estimates of mean square errors (MSE) for reconstruction
and forecasting of (H(1),H(2)) by the considered above SSA-based methods. Note

that the resultant MSE is calculated as sum of MSE(1) and MSE(2) for H(1) and
H(2) correspondingly.

We take the following parameters for generation of time series: N = 71, vari-
ance of noises σ2 = 25. Number of realization is equal to 10000.

We consider three variants of the signals (H(1), H(2)):
Example 1 (the same periods, difference between phases not equal to π/2):

h
(1)
k = 30 cos(2πk/12), h

(2)
k = 20 cos(2πk/12 + π/4), k = 0, . . . , N − 1.

Example 2 (the same periods and amplitudes; phases difference equal to π/2):

h
(1)
k = 30 cos(2πk/12), h

(2)
k = 30 cos(2πk/12 + π/2), k = 0, . . . , N − 1.

Example 3 (different periods):

h
(1)
k = 30 cos(2πk/12), h

(2)
k = 20 cos(2πk/8 + π/4), k = 0, . . . , N − 1.

Choice of these examples is determined by different dimensions of signal tra-
jectory spaces for different variants of SSA-based methods (see Table 1).
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Table 1: Dimensions of signal trajectory spaces
Example 1 Example 2 Example 3

SSA 2 2 2
MSSA 2 2 4
CSSA 2 1 4

Results of investigation for different window lengths L are summarized in Ta-
bles 2 and 3. Minimum values in rows are marked by bold font. The 24 term-ahead
forecast was performed. We omit results of the CSSA forecast and Example 2 for
brevity. Comparison of Tables 2 and 3 with Table 1 clearly demonstrates relation

Table 2: MSE of signal reconstruction
Example 1 L = 12 L = 24 L = 36 L = 48 L = 60

SSA 6.58 4.09 4.06 4.09 6.58
MSSA 6.44 3.71 3.22 3.01 4.06
CSSA 6.58 4.09 4.07 4.09 6.58

Example 2 L = 12 L = 24 L = 36 L = 48 L = 60

SSA 6.57 4.08 4.05 4.08 6.57
MSSA 6.44 3.71 3.24 3.03 4.02
CSSA 3.22 2.08 2.07 2.08 3.22

Example 3 L = 12 L = 24 L = 36 L = 48 L = 60

SSA 6.42 3.99 3.96 3.99 6.42
MSSA 13.77 7.57 6.13 5.75 7.66
CSSA 13.91 8.16 7.68 8.16 13.91

Table 3: MSE of signal forecast
Example 1 L = 12 L = 24 L = 36 L = 48 L = 60

MSSA-L 10.69 7.12 7.26 7.35 8.61
MSSA-K 12.00 8.26 7.46 6.57 7.80

SSA 14.32 11.00 12.26 12.62 15.65

Example 3 L = 12 L = 24 L = 36 L = 48 L = 60

MSSA-L 50.58 14.58 15.19 14.69 17.96
MSSA-K 39.22 16.91 16.00 13.22 16.30
SSA 14.59 11.11 12.65 12.77 16.01

between accuracy of signal reconstruction/forecast and dimension of the signal
trajectory space.

Table 2 contains MSE averaging by time series points. Fig. 1 and 2 demonstrate
dependence of error (of mean square deviation (MSD) equal to square root of MSE)
on point number for Example 2. Fig. 1 shows that advantage of the window length
L = 48 for MSSA in comparison with L = 36 is achieved due to better description
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of points far from the middle. Fig. 2 demonstrates different spreading of errors for
different methods and the same window length L = 36.

L=36
L=48

12 24 36 48 60
0.93 

1.43 

1.93 

2.43 

2.93 

Figure 1: MSD(1) for different L

SSA
MSSA
CSSA

12 24 36 48 60
0.5 

1.3 

2.0 

2.8 

3.6 

Figure 2: MSD(1) for different methods

Conclusions.
1. Accuracy of SSA-based methods is closely related to structure of the signal
trajectory spaces generated by these methods.
2. The MSSA method has an advantage if the time series include matched com-
ponents.
3. Optimal window lengths for analysis and forecast can differ.
4. Accuracy of forecast globally corresponds to accuracy of reconstruction; how-
ever the previous item shows that this relation isn’t unambiguous.
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